CLC number: O614.81
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-03-09
Cited: 0
Clicked: 4122
Xin Wang, Zhi-zhen Ye, Yi-zheng Jin. Syntheses and characterizations of alloyed CoxNi1−xO nanocrystals[J]. Journal of Zhejiang University Science A, 2017, 18(4): 306-312.
@article{title="Syntheses and characterizations of alloyed CoxNi1−xO nanocrystals",
author="Xin Wang, Zhi-zhen Ye, Yi-zheng Jin",
journal="Journal of Zhejiang University Science A",
volume="18",
number="4",
pages="306-312",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600399"
}
%0 Journal Article
%T Syntheses and characterizations of alloyed CoxNi1−xO nanocrystals
%A Xin Wang
%A Zhi-zhen Ye
%A Yi-zheng Jin
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 4
%P 306-312
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600399
TY - JOUR
T1 - Syntheses and characterizations of alloyed CoxNi1−xO nanocrystals
A1 - Xin Wang
A1 - Zhi-zhen Ye
A1 - Yi-zheng Jin
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 4
SP - 306
EP - 312
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600399
Abstract: alloying is an effective way to manipulate the composition and physico-chemical properties of functional materials. We demonstrated the syntheses of alloyed CoxNi1−xO nanocrystals using a nonaqueous approach, with x continuously tuned from 0 to 1 by varying the molar ratios of the cobalt precursor in the reagents. The morphological, structural, and compositional properties of the alloyed CoxNi1−xO nanocrystals were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy dispersive X-ray spectroscopy (EDS). The results showed that the cobalt and nickel atoms were homogeneously distributed in the alloyed nanocrystals. The as-prepared CoxNi1−xO nanocrystals can be applied as the hole-transporting layers in polymer light emitting diodes (PLEDs). Our study provides a good example for the syntheses of alloyed oxide nanocrystals with continuously tunable composition.
This manuscript reports the syntheses of alloyed CoxNi1-xO nanocrystals by the protecting-ligand assisted approach, with x can be tuned from 0 to 1. The authors conducted detailed characterizations and provided solid evidences on the formation of alloyed nanocrystals. This work is of interest for the material scientists and chemists working in the field of colloidal nanocrystals.
[1]Choi, S.H., Kang, Y.C., 2014. Ultrafast synthesis of yolk-shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Applied Materials & Interfaces, 6(4):2312-2316.
[2]Dai, X.L., Zhang, Z.X., Jin, Y.Z., et al., 2014. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515(7525):96-99.
[3]Hagelin-Weaver, H.A.E., Hoflund, G.B., Minahan, D.M., et al., 2004. Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment. Applied Surface Science, 235(4):420-448.
[4]Hüfner, H., 1994. Electronic-structure of NiO and related 3D-transition-metal compounds. Advances in Physics, 43(2):183-356.
[5]Jiang, F., Choy, W.C.H., Li, X.C., et al., 2015. Post-treatment-free solution-processed non-stoichiometric NiOx nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Advanced Materials, 27(18):2930-2937.
[6]Jin, Y.Z., Yi, Q., Zhou, L.M., et al., 2012. Synthesis and characterization of ultrathin tin-doped zinc oxide nanowires. European Journal of Inorganic Chemistry, 2012(27):4268-4272.
[7]Kılıç, Ç., Zunger, A., 2002. N-type doping of oxides by hydrogen. Applied Physics Letters, 81(1):73-75.
[8]Kuboon, S., Hu, Y.H., 2011. Study of NiO-CoO and Co3O4-Ni3O4 solid solutions in multiphase Ni-Co-O systems. Industrial & Engineering Chemistry Research, 50(4):2015-2020.
[9]Lang, J.W., Kong, L.B., Wu, W.J., et al., 2008. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chemical Communications, (35):4213-4215.
[10]Liang, X.Y., Yi, Q., Bai, S., et al., 2014. Synthesis of unstable colloidal inorganic nanocrystals through the introduction of a protecting ligand. Nano Letters, 14(6):3117-3123.
[11]Peck, M.A., Langell, M.A., 2012. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chemistry of Materials, 24(23):4483-4490.
[12]Qiu, H.L., Chen, G.Y., Fan, R.W., et al., 2011. Tuning the size and shape of colloidal cerium oxide nanocrystals through lanthanide doping. Chemical Communications, 47(34):9648-9650.
[13]Ratcliff, E.L., Meyer, J., Steirer, K.X., et al., 2011. Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chemistry of Materials, 23(22):4988-5000.
[14]Regulacio, M.D., Han, M.Y., 2010. Composition-tunable alloyed semiconductor nanocrystals. Accounts of Chemical Research, 43(5):621-630.
[15]Stiglich, J.J., Cohen, J.B., Whitmore, D.H., 1973a. Interdiffusion in CoO-NiO solid-solutions. Journal of the American Ceramic Society, 56(3):119-126.
[16]Stiglich, J.J., Whitmore, D.H., Cohen, J.B., 1973b. Defect structure of NiO-CoO solid solutions. Journal of the American Ceramic Society, 56(4):211-213.
[17]Takizawa, K., Hagiwara, A., 2001. Behavior of CoO-NiO solid solution in molten carbonate. Journal of the Electrochemical Society, 148(9):A1034-A1040.
[18]Varghese, B., Reddy, M.V., Yanwu, Z., et al., 2008. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials, 20(10):3360-3367.
[19]Wang, X., Jin, Y.Z., He, H.P., et al., 2013. Bandgap engineering and shape control of colloidal CdxZn1−xO nanocrystals. Nanoscale, 5(14):6464-6468.
[20]Wang, Y.F., Zhang, L.J., 2012. Simple synthesis of CoO-NiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance. Journal of Power Sources, 209:20-29.
[21]Wang, Z.Q., Zhang, M., Zhou, J., 2016. Flexible NiO-graphene-carbon fiber mats containing multifunctional graphene for high stability and high specific capacity lithium-ion storage. ACS Applied Materials & Interfaces, 8(18):11507-11515.
[22]White, M.A., Ochsenbein, S.T., Gamelin, D.R., 2008. Colloidal nanocrystals of wurtzite Zn1−xCoxO (0≤x≤1): models of spinodal decomposition in an oxide diluted magnetic semiconductor. Chemistry of Materials, 20(22):7107-7116.
[23]Xiao, S.H., Qu, F.Y., Wu, X., 2016. Ultrathin NiO nanoflakes electrode materials for supercapacitors. Applied Surface Science, 360:8-13.
[24]Yang, H., Guai, G.H., Guo, C., et al., 2011. NiO/Graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. The Journal of Physical Chemistry C, 115(24):12209-12215.
[25]Yang, H.M., Ouyang, J., Tang, A.D., 2007. Single step synthesis of high-purity CoO nanocrystals. The Journal of Physical Chemistry B, 111(28):8006-8013.
[26]Yang, Y.F., Jin, Y.Z., He, H.P., et al., 2010. Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. Journal of the American Chemical Society, 132(38):13381-13394.
[27]Yuan, C.Z., Zhang, X.G., Su, L.H., et al., 2009. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 19(32):5772-5777.
[28]Zhang, H., Cheng, J.Q., Lin, F., et al., 2016. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 10(1):1503-1511.
[29]Zhang, J., Wang, J.T., Fu, Y.Y., et al., 2014. Efficient and stable polymer solar cells with annealing-free solution-processible NiO nanoparticles as anode buffer layers. Journal of Materials Chemistry C, 2(39):8295-8302.
[30]Zhang, L.P., Mu, J.C., Wang, Z., et al., 2016. One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 671:60-65.
[31]Zhou, G., Wang, D.W., Yin, L.C., et al., 2012. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano, 6(4):3214-3223.
[32]Zhu, Y.F., Liang, X.Y., Jiang, Q., 2008. The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys. Advanced Functional Materials, 18(9):1422-1429.
Open peer comments: Debate/Discuss/Question/Opinion
<1>