CLC number:
On-line Access: 2023-02-24
Received: 2022-10-19
Revision Accepted: 2023-02-10
Crosschecked: 0000-00-00
Cited: 0
Clicked: 186
Zhanmei ZHANG, Yi ZHANG, Xilin CHEN, Ziran HUANG, Zuqin ZOU, Huaili ZHENG. Co3O4-ZnO/rGO catalyst preparation and rhodamine B degradation by sulfate radical photocatalysis[J]. Journal of Zhejiang University Science A, 1998, -1(-1): .
@article{title="Co3O4-ZnO/rGO catalyst preparation and rhodamine B degradation by sulfate radical photocatalysis",
author="Zhanmei ZHANG, Yi ZHANG, Xilin CHEN, Ziran HUANG, Zuqin ZOU, Huaili ZHENG",
journal="Journal of Zhejiang University Science A",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200490"
}
%0 Journal Article
%T Co3O4-ZnO/rGO catalyst preparation and rhodamine B degradation by sulfate radical photocatalysis
%A Zhanmei ZHANG
%A Yi ZHANG
%A Xilin CHEN
%A Ziran HUANG
%A Zuqin ZOU
%A Huaili ZHENG
%J Journal of Zhejiang University SCIENCE A
%V -1
%N -1
%P
%@ 1673-565X
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200490
TY - JOUR
T1 - Co3O4-ZnO/rGO catalyst preparation and rhodamine B degradation by sulfate radical photocatalysis
A1 - Zhanmei ZHANG
A1 - Yi ZHANG
A1 - Xilin CHEN
A1 - Ziran HUANG
A1 - Zuqin ZOU
A1 - Huaili ZHENG
J0 - Journal of Zhejiang University Science A
VL - -1
IS - -1
SP -
EP -
%@ 1673-565X
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200490
Abstract: The development of a combined photocatalytic system with peroxymonosulfate (PMS) has great potential applications in the degradation and treatment of aqueous organic pollutants. Herein, a Co3O4-ZnO/rGO was prepared by a hydrothermal method using cobalt acetate, zinc acetate, and reduced graphene oxide (rGO) as the main raw materials. The physical and chemical characteristics of the obtained catalyst were analyzed using XDR, XPS, SEM, and FT-IR. The photocatalytic features and capacities of the catalytic materials to activate PMS were investigated. Co3O4-ZnO/rGO exhibited stronger photocatalytic activity and ability to activate PMS than Co3O4/rGO or ZnO/rGO, and significantly improved the ability of PMS and photocatalysis to synergistically degrade rhodamine (RhB), with a degradation rate of 90.40% within 40 min. The mechanism of RhB degradation was proposed based on characterization of materials, evaluation of RhB degradation efficiency, and analysis of the active species involved. The unique particle/sheet structure of Co3O4-ZnO/rGO provides a large number of active sites, and the formation of heterojunctions between Co3O4 and ZnO improves carrier separation and transport in the reaction system. Our study offers a reference for designing more effective heterojunction catalysts based on the combination of PMS and photocatalytic technology.
Open peer comments: Debate/Discuss/Question/Opinion
<1>