Full Text:   <2227>

Summary:  <1777>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-04-24

Cited: 0

Clicked: 3729

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Da-peng Tan

https://orcid.org/0000-0002-6018-9648

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2020 Vol.21 No.5 P.401-405

http://doi.org/10.1631/jzus.A2000067


A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings


Author(s):  Xiong-xin Hu, Fang Xu, Da-peng Tan

Affiliation(s):  College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

Corresponding email(s):   tandapeng@zjut.edu.cn

Key Words:  Synchronous sampling, Direct current estimation, Self-sensing active magnetic bearing


Xiong-xin Hu, Fang Xu, Da-peng Tan. A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings[J]. Journal of Zhejiang University Science A, 2020, 21(5): 401-405.

@article{title="A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings",
author="Xiong-xin Hu, Fang Xu, Da-peng Tan",
journal="Journal of Zhejiang University Science A",
volume="21",
number="5",
pages="401-405",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000067"
}

%0 Journal Article
%T A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings
%A Xiong-xin Hu
%A Fang Xu
%A Da-peng Tan
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 5
%P 401-405
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000067

TY - JOUR
T1 - A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings
A1 - Xiong-xin Hu
A1 - Fang Xu
A1 - Da-peng Tan
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 5
SP - 401
EP - 405
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000067


Abstract: 
The position estimator is a key module of self-sensing active magnetic bearings (AMBs). It can improve system dynamic performance and reduce the axial dimension. Generally, the estimation methods can be divided into two categories: state observer estimation and parameter estimation.

基于同步离散电流估计的磁轴承自传感方法

目的:磁轴承自传感是一个关联磁悬浮转子动态特性的机电磁多物理场耦合问题. 研究自传感磁轴承(AMBs)机电磁耦合机理与磁阻模型,对于其工作性能提升具有重要意义. 当前基于脉宽调制(PWM)开关功放的磁轴承自传感方法,可缩小轴承几何尺寸,提高电气效率和转子动态性能,但存在传感精度不高、路径过长、稳定性较低等问题. 针对上述问题,本文旨在提出一种基于PWM开关频率同步采样的离散电流估计(SS-DCE)方法,以缩短自传感路径,改善传感精度,以及提高磁轴承动态性能与工作稳定性.
方法: 1. 通过分析两个相邻离散电流的数学关系,建立转子位移解析表达式; 2. 基于SS-DCE方法,结合位置式双闭环控制技术,并借助物理传感器实现对AMBs自传感过程的关键参数测试和评估 验证.
结论:1. 磁轴承转子位移是一个关于电压/电流的非线性函数,而利用PWM开关功放纹波特性可使其线性化,进而缩短自传感物理路径,提高工作稳定性; 2. 自传感路径的长度由滤波器数量和算法复杂度决定,与相位滞后紧密相关; 3. 与模拟/数字滤波幅度解调法相比,基于SS-DCE的自传感方法的静态精度更高,稳定裕度更大,且具有较好的升速过程频率特性.

关键词:自传感磁轴承(AMBs); 回路磁阻; 同步采样(SS); 离散电流估计(DCE); 双闭环控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen SL, Lin SY, Toh CS, 2020. Adaptive unbalance compensation for a three-pole active magnetic bearing system. IEEE Transactions on Industrial Electronics, 67(3):2097-2106.

[2]Glück T, Kemmetmüller W, Tump C, et al., 2011. A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification. Control Engineering Practice, 19(2):146-157.

[3]Ji SM, Weng XX, Tan DP, 2012. Analytical method of softness abrasive two-phase flow field based on 2D model of LSM. Acta Physica Sinica, 61(1):010205 (in Chinese).

[4]Li LC, Shinshi T, Shimokohbe A, 2004. State feedback control for active magnetic bearings based on current change rate alone. IEEE Transactions on Magnetics, 40(6):3512-3517.

[5]Maslen EH, Montie DT, Iwasaki T, 2006. Robustness limitations in self-sensing magnetic bearings. Journal of Dynamic Systems, Measurement, and Control, 128(2):197-203.

[6]Niemann AC, van Schoor G, du Rand CP, 2013. A self-sensing active magnetic bearing based on a direct current measurement approach. Sensors, 13(9):12149-12165.

[7]Park YH, Han DC, Park IH, et al., 2008. A self-sensing technology of active magnetic bearings using a phase modulation algorithm based on a high frequency voltage injection method. Journal of Mechanical Science and Technology, 22(9):1757-1764.

[8]Ranft EO, van Schoor G, du Rand CP, 2011. Self-sensing for electromagnetic actuators. Part II: position estimation. Sensors and Actuators A: Physical, 172(2):410-419.

[9]Schammass A, Herzog R, Buhler P, et al., 2005. New results for self-sensing active magnetic bearings using modulation approach. IEEE Transactions on Control Systems Technology, 13(4):509-516.

[10]Tan DP, Zhang LB, Ai QL, 2019. An embedded self-adapting network service framework for networked manufacturing system. Journal of Intelligent Manufacturing, 30(2):539-556.

[11]van Schoor G, Niemann AC, du Rand CP, 2013. Evaluation of demodulation algorithms for robust self-sensing active magnetic bearings. Sensors and Actuators A: Physical, 189:441-450.

[12]Vischer D, 1988. Sensorless and Voltage Driven Magnetic Bearing. PhD Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland.

[13]Yu J, Zhu CS, 2016. Position estimation accuracy improvement based on accurate modeling of self-sensing active magnetic bearings. Sensors and Actuators A: Physical, 248:233-245.

[14]Yu J, Zhu CS, 2018. A multifrequency disturbances identification and suppression method for the self-sensing AMB rotor system. IEEE Transactions on Industrial Electronics, 65(8):6382-6392.

[15]Zhang L, Wang JS, Tan DP, et al., 2017. Gas compensation-based abrasive flow processing method for complex titanium alloy surfaces. International Journal of Advanced Manufacturing Technology, 92(9-12):3385-3397.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE