Full Text:   <750>

Summary:  <304>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-10-19

Cited: 0

Clicked: 915

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chao ZHANG

https://orcid.org/0000-0002-8832-4047

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.10 P.841-858

http://doi.org/10.1631/jzus.A2300104


Micro-Newton scale variable thrust control technique and its noise problem for drag-free satellite platforms: a review


Author(s):  Changyi XU, Wenya LI, Xuhui LIU, Yong LI, Chao ZHANG

Affiliation(s):  School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China; more

Corresponding email(s):   chao.zhang@zju.edu.cn

Key Words:  Space physics detection, Satellite platforms, Drag-free control, Micro-Newton scale variable thrust, Thrust noise


Share this article to: More |Next Article >>>

Changyi XU, Wenya LI, Xuhui LIU, Yong LI, Chao ZHANG. Micro-Newton scale variable thrust control technique and its noise problem for drag-free satellite platforms: a review[J]. Journal of Zhejiang University Science A, 2023, 24(10): 841-858.

@article{title="Micro-Newton scale variable thrust control technique and its noise problem for drag-free satellite platforms: a review",
author="Changyi XU, Wenya LI, Xuhui LIU, Yong LI, Chao ZHANG",
journal="Journal of Zhejiang University Science A",
volume="24",
number="10",
pages="841-858",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300104"
}

%0 Journal Article
%T Micro-Newton scale variable thrust control technique and its noise problem for drag-free satellite platforms: a review
%A Changyi XU
%A Wenya LI
%A Xuhui LIU
%A Yong LI
%A Chao ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 10
%P 841-858
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300104

TY - JOUR
T1 - Micro-Newton scale variable thrust control technique and its noise problem for drag-free satellite platforms: a review
A1 - Changyi XU
A1 - Wenya LI
A1 - Xuhui LIU
A1 - Yong LI
A1 - Chao ZHANG
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 10
SP - 841
EP - 858
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300104


Abstract: 
High-precision detection in fundamental space physics, such as space gravitational wave detection, high-precision earth gravity field measurement, and reference frame drag effect measurement, is the key to achieving important breakthroughs in the scientific study of fundamental space physics. Acquiring high-precision measurements requires high-performance satellite platforms to achieve “drag-free control” in a near “pure gravity” flight environment. The critical technology for drag-free control is variable thrust control at the micro-Newton scale. thrust noise is the most important technical indicator for achieving drag-free flight. However, there is no literature about the current status and future prospects of variable thrust control based on thrust noise. Therefore, the micro-Newton variable thrust control technology and the thrust noise of the drag-free satellite platform are reviewed in this work. Firstly, the research status of micro-Newton scale variable thrust control technology and its applications to drag-free satellite platforms are introduced. Then, the noise problem is analyzed in detail and its solution is theoretically investigated in three aspects: “cross-basin flow problem,” “control problem,” and “system instability and multiple-coupled problem.” Finally, a systematic overview is presented and the corresponding suggested directions of research are discussed. This work provides detailed understanding and support for realizing low-noise variable thrust control in the next generation of drag-free satellites.

微牛级变推力控制技术和无拖曳卫星平台的噪声问题:综述

作者:徐昌一1,李文娅1,刘旭辉2,李永2,张超3
机构:1大连理工大学,控制科学与工程学院,中国大连,116024;2北京控制工程研究所,中国北京,100190;3浙江大学,机械工程学院流体动力与机电系统国家重点实验室,中国杭州,310058
概要:实现空间引力波探测、地球重力场高精度测量、参照系阻力效应测量等基础空间物理量的高精度测量,需要高性能卫星平台在接近"纯重力"的飞行环境中实现"无拖曳控制"。无拖曳控制的关键技术是微牛顿尺度下的变推力控制。推力噪声是实现无阻力飞行最重要的技术指标。因为推力噪声的形成机理和影响规律的物理因素,噪声抑制技术的发展受到限制。针对推力噪声的主要挑战,本文对微牛顿变推力控制技术和无拖曳卫星平台的推力噪声问题进行了系统的综述,并对今后的研究方向进行了讨论。该工作为实现下一代无阻卫星的低噪声变推力控制提供了详细的理解和支持。

关键词:空间物理探测;卫星平台;无拖曳控制;微牛级变推力技术;推力噪声

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlexeenkoAA, FedosovDA, GimelsheinSF, et al., 2006. Transient heat transfer and gas flow in a MEMS-based thruster. Journal of Microelectromechanical Systems, 15(1):181-194.

[2]AndersonG, AndersonJ, AndersonM, et al., 2018. Experimental results from the ST7 mission on LISA Pathfinder. Physical Review D, 98(10):102005.

[3]AnzalchiJ, HarversonM, 2007. Generic flexible payload technology for enhancing in-orbit satellite payload flexibility. Proceedings of the 25th AIAA International Communications Satellite Systems Conference.

[4]ArmanoM, AudleyH, BairdJ, et al., 2018. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz. Physical Review Letters, 120(6):061101.

[5]ArmanoM, AudleyH, BairdJ, et al., 2019. LISA Pathfinder platform stability and drag-free performance. Physical Review D, 99(8):082001.

[6]BacchettaA, ColangeloL, CanutoE, et al., 2017. From GOCE to NGGM: automatic control breakthroughs for European future gravity missions. IFAC-PapersOnLine, 50(1):6428-6433.

[7]Bar-KanaR, 1994. Limits on direct detection of gravitational waves. Physical Review D, 50(2):1157-1160.

[8]BoleaY, PuigV, BlesaJ, 2014. Gain-scheduled smith predictor PID-based LPV controller for open-flow canal control. IEEE Transactions on Control Systems Technology, 22(2):468-477.

[9]BortoluzziD, VignottoD, ZambottiA, et al., 2021. In-flight testing of the injection of the LISA pathfinder test mass into a geodesic. Advances in Space Research, 67(1):504-520.

[10]BruschiP, PiottoM, BarillaroG, 2006. Effects of gas type on the sensitivity and transition pressure of integrated thermal flow sensors. Sensors and Actuators A: Physical, 132(1):182-187.

[11]BurderiL, SannaA, Di SalvoT, et al., 2021. GrailQuest: hunting for atoms of space and time hidden in the wrinkle of space-time. Experimental Astronomy, 51(3):1255-1297.

[12]CaiYK, LiuZQ, SongQH, et al., 2015a. Fluid mechanics of internal flow with friction and cutting strategies for micronozzles. International Journal of Mechanical Sciences, 100:41-49.

[13]CaiYK, LiuZQ, ShiZY, et al., 2015b. Optimization of machining parameters for micro-machining nozzle based on characteristics of surface roughness. The International Journal of Advanced Manufacturing Technology, 80(5-8):‍1403-1410.

[14]CaiYK, LiuZQ, ShiZY, et al., 2016. Influence of machined surface roughness on thrust performance of micro-nozzle manufactured by micro-milling. Experimental Thermal and Fluid Science, 77:295-305.

[15]CaiYK, LiuZQ, ShiZY, 2017. Effects of dimensional size and surface roughness on service performance for a micro Laval nozzle. Journal of Micromechanics and Microengineering, 27(5):055001.

[16]CanutoE, 2008. Drag-free and attitude control for the GOCE satellite. Automatica, 44(7):1766-1780.

[17]CanutoE, MassottiL, 2009. All-propulsion design of the drag-free and attitude control of the European satellite GOCE. Acta Astronautica, 64(2-3):325-344.

[18]CesareS, AguirreM, AllasioA, et al., 2010. The measurement of Earth’s gravity field after the GOCE mission. Acta Astronautica, 67(7-8):702-712.

[19]CesareS, AllasioA, AnselmiA, et al., 2016. The European way to gravimetry: from GOCE to NGGM. Advances in Space Research, 57(4):1047-1064.

[20]ChenSH, HeHM, LiXF, et al., 2009. Application of fuzzy PID controller with self-adaptive algorithm and non-uniform grid scheduling to WFGD. IFAC Proceedings Volumes, 42(9):20-25.

[21]ChoJW, SongC, 2004. Stabilized max-min flow control using PID and PII2 controllers. Proceedings of the IEEE Global Telecommunications Conference, p.1411-1417.

[22]ChristopheB, BoulangerD, FoulonB, et al., 2015. A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions. Acta Astronautica, 117:1-7.

[23]CollingwoodCM, GabrielSB, CorbettMH, et al., 2009. The MiDGIT thruster: development of a multi-mode thruster. Proceedings of the 31st International Electric Propulsion Conference, p.2-13.

[24]CuiK, LiuH, JiangWJ, et al., 2018. Effects of cusped field thruster on the performance of drag-free control system. Acta Astronautica, 144:193-200.

[25]CuiK, LiuH, JiangWJ, et al., 2020. Effects of thrust noise and measurement noise on drag-free and attitude control system. Microgravity Science and Technology, 32(2):‍189-202.

[26]CuiK, LiuH, JiangWJ, et al., 2021. Thrust noise cause analysis and suppression of a cusped field thruster. Acta Astronautica, 179:322-329.

[27]DeBraDB, ConklinJW, 2011. Measurement of drag and its cancellation. Classical and Quantum Gravity, 28(9):094015.

[28]DietzAJ, 1999. Local boundary-layer receptivity to a convected free-stream disturbance. Journal of Fluid Mechanics, 378:291-317.

[29]DijkstraM, LammerinkTSJ, de BoerMJ, et al., 2009. Ambient temperature-gradient compensated low-drift thermopile flow sensor. Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems, p.479-482.

[30]DingYT, YaoZH, HeF, 2004. Gas flow characteristics in micro-nozzle. Engineering Mechanics, 21(3):190-195 (in Chinese).

[31]DittusH, LämmerzahlC, TuryshevSG, 2008. Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space. Springer, Berlin Heidelberg, Germany.

[32]DouHS, 2022. Stability and transition of boundary layer flow. In: Dou HS (Ed.), Origin of Turbulence. Springer, Singapore, p.159-206.

[33]GalinaitisWS, RogersRC, 1998. Control of a hysteretic actuator using inverse hysteresis compensation. Proceedings of SPIE 3323, Smart Structures and Materials 1998: Mathematics and Control in Smart Structures, p.267-277.

[34]Galindo-RosalesFJ, Campo-DeañoL, SousaPC, et al., 2014. Viscoelastic instabilities in micro-scale flows. Experimental Thermal and Fluid Science, 59:128-139.

[35]GaoY, MaYF, LiuJT, 2014. A review of the vaporizing liquid microthruster technology. Proceedings of the 6th International Symposium on Fluid Machinery and Fluid Engineering, p.93-96.

[36]GeP, JouanehM, 1997. Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering, 20(2):99-111.

[37]GiacagliaGEO, MarcondesAO, 2007. Atmospheric models for artificial satellites orbit determination‍–‍a review. Revista Ciências Exatas, 13(1):17-31.

[38]GrmA, GrönlandTA, RodičT, 2011. Numerical analysis of a miniaturised cold gas thruster for micro- and nano-satellites. Engineering Computations, 28(2):184-195.

[39]GuoPX, GaoZX, JiangCW, et al., 2021. Sensitivity analysis on supersonic-boundary-layer stability subject to perturbation of flow parameters. Physics of Fluids, 33(8):084111.

[40]HainesR, 2000. Development of a drag-free control system. Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites.

[41]HameedAH, KafafyR, AsrarW, et al., 2013. Two-dimensional flow properties of micronozzle under varied isothermal wall conditions. International Journal of Engineering Systems Modelling and Simulation, 5(4):174-180.

[42]HeZQ, JiangZZ, ZhangHW, et al., 2021. Analytical method of nonlinear coupled constitutive relations for rarefied non-equilibrium flows. Chinese Journal of Aeronautics, 34(2):136-153.

[43]HeyFG, 2018. Micro Newton Thruster Development. Springer, Wiesbaden, Germany.

[44]IorioL, 2019. Measuring general relativistic dragging effects in the Earth’s gravitational field with ELXIS: a proposal. Classical and Quantum Gravity, 36(3):035002.

[45]JarrigeJ, ThoboisP, BlanchardC, et al., 2014. Thrust measurements of the Gaia mission flight-model cold gas thrusters. Journal of Propulsion and Power, 30(4):934-943.

[46]JiY, YuanK, ChungJN, 2006. Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel. International Journal of Heat and Mass Transfer, 49(7-8):1329-1339.

[47]JiangXY, LiCB, 2017. Review of research on the receptivity of hypersonic boundary layer. Journal of Experiments in Fluid Mechanics, 31(2):1-11 (in Chinese).

[48]KhezerlooM, DjenidiL, TarduS, 2021. Combined effect of roughness and suction on heat transfer in a laminar channel flow. International Communications in Heat and Mass Transfer, 126:105377.

[49]KorolV, ToonenS, KleinA, et al., 2020. Populations of double white dwarfs in milky way satellites and their detectability with LISA. Astronomy & Astrophysics, 638:A153.

[50]KrejciP, KuhnenK, 2001. Inverse control of systems with hysteresis and creep. IEE Proceedings-Control Theory and Applications, 148(3):185-192.

[51]la TorreF, KenjerešS, MoerelJL, et al., 2011. Hybrid simulations of rarefied supersonic gas flows in micro-nozzles. Computers & Fluids, 49(1):312-322.

[52]LangeBO, 1964. The Control and Use of Drag-Free Satellites. PhD Thesis, Stanford University, Stanford, USA.

[53]LeNTP, RoohiE, TranTN, 2019. Comprehensive assessment of newly-developed slip-jump boundary conditions in high-speed rarefied gas flow simulations. Aerospace Science and Technology, 91:656-668.

[54]LiL, YuanL, WangL, et al., 2021. Recent advances in precision measurement & pointing control of spacecraft. Chinese Journal of Aeronautics, 34(10):191-209.

[55]LiWJ, ChengDY, LiuXG, et al., 2019. On-orbit service (OOS) of spacecraft: a review of engineering developments. Progress in Aerospace Sciences, 108:32-120.

[56]LiXJ, YuanJY, RenX, et al., 2022. Simulation applicability verification of various slip models in micro-nozzle. Acta Astronautica, 192:68-76.

[57]LiY, LiuXH, WangXD, et al., 2019. Review and prospect on the large-range thrust throttling technology with extremely small thrust. Aerospace Control and Application, 45(6):1-12 (in Chinese).

[58]LiénartT, PfaabK, 2013. Cold gas propulsion system for CNES microscope spacecraft: presentation of the project and development and verification plan. Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.

[59]LiuH, NiuX, ZengM, et al., 2022. Review of micro propulsion technology for space gravitational waves detection. Acta Astronautica, 193:496-510.

[60]LiuXH, LiD, FuXJ, et al., 2023. Modeling of rarefied gas flows inside a micro-nozzle based on the DSMC method coupled with a modified gas-surface interaction model. Energies, 16(1):505.

[61]LiuZC, FanWJ, 2010. Velocity distribution and scaling properties of wall bounded flow. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(7):505-510.

[62]Lloyd-DaviesEJ, PonmanTJ, CannonDB, 2000. The entropy and energy of intergalactic gas in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 315(4):689-702.

[63]LouisosWF, HittDL, 2007. Heat transfer & viscous effects in 2D & 3D supersonic micro-nozzle flows. Proceedings of the 37th AIAA Fluid Dynamics Conference and Exhibit.

[64]LuoJ, ChenLS, DuanHZ, et al., 2016. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity, 33(3):035010.

[65]LuoJ, BaiYZ, CaiL, et al., 2020. The first round result from the TianQin-1 satellite. Classical and Quantum Gravity, 37(18):185013.

[66]LuoZR, GuoZK, JinG, et al., 2020. A brief analysis to Taiji: science and technology. Results in Physics, 16:102918.

[67]MaHJ, ZhengJH, HanP, et al., 2022. Robust composite control design of drag-free satellite with Kalman filter-based extended state observer for disturbance reduction. Advances in Space Research, 70(10):3034-3050.

[68]MaoSP, WuSF, 2023. ESO based adaptive fault-tolerant control for drag-free satellite. Proceedings of the International Conference on Guidance, Navigation and Control, p.6228-6239.

[69]MarieJ, CorderoF, MilliganD, et al., 2019. In-orbit experience of the Gaia and LISA pathfinder cold gas micro-propulsion systems. In: Pasquier H, Cruzen CA, Schmidhuber M, et al. (Eds.), Space Operations: Inspiring Humankind’s Future. Springer, Cham, Germany, p.551-574.

[70]MatticariG, NociG, SicilianoP, et al., 2006. Cold gas micro propulsion prototype for very fine spacecraft attitude/position control. Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.

[71]MatticariG, MaterassiM, NociG, et al., 2011. Use of a “wide dynamic range” electronic flow regulator to increase the flexibility and versatility of electric and cold gas small propulsion systems. Proceedings of the 32nd International Electric Propulsion Conference.

[72]MoríñigoJA, Hermida-QuesadaJ, 2010. Solid–gas surface effect on the performance of a MEMS-class nozzle for micropropulsion. Sensors and Actuators A: Physical, 162(1):61-71.

[73]NguyenAN, ConklinJW, 2015. Three-axis drag-free control and drag force recovery of a single-thruster small satellite. Journal of Spacecraft and Rockets, 52(6):1640-1650.

[74]NicoliniD, FrigotPE, MussoF, et al., 2009. Direct thrust and thrust noise measurements on the LISA pathfinder field emission thruster. Proceedings of the 31st International Electric Propulsion Conference.

[75]NiuX, LiuH, CuiK, et al., 2022. Multi-source information fusion for space gravitational waves detection thrust estimation on orbit. Acta Astronautica, 200:539-548.

[76]NociG, MatticariG, SicilianoP, et al., 2007. Advanced fluidic components for electric and cold gas propulsion applications: review of status of achievements at TAS-I Florence. Proceedings of the 30th International Electric Propulsion Conference.

[77]OrtegaG, Giron-SierraJM, 1998. Geno-fuzzy control in autonomous servicing of a space station. Engineering Applications of Artificial Intelligence, 11(3):383-400.

[78]PalmaPC, DanehyPM, HouwingAFP, 2003. Fluorescence imaging of rotational and vibrational temperature in shock-tunnel nozzle flow. AIAA Journal, 41(9):1722-1732.

[79]PalmerJL, HansonRK, 1993. Single-shot velocimetry using planar laser-induced fluorescence imaging of nitric oxide. Proceedings of the 29th Joint Propulsion Conference and Exhibit.

[80]PicellaF, BucciMA, CherubiniS, et al., 2019. A synthetic forcing to trigger laminar-turbulent transition in parallel wall bounded flows via receptivity. Journal of Computational Physics, 393:92-116.

[81]PittetC, 2007. Accelero-stellar hybridization for microscope drag free mission. IFAC Proceedings Volumes, 40(7):271-276.

[82]RafiKMM, DeepuM, RajeshG, 2019. Effect of heat transfer and geometry on micro-thruster performance. International Journal of Thermal Sciences, 146:106063.

[83]RanjanR, ChouSK, RiazF, et al., 2017. Cold gas micro propulsion development for satellite application. Energy Procedia, 143:754-761.

[84]RanjanR, KarthikeyanK, RiazF, et al., 2018. Cold gas propulsion microthruster for feed gas utilization in micro satellites. Applied Energy, 220:921-933.

[85]RenksizbulutM, NiazmandH, TercanG, 2006. Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. International Journal of Thermal Sciences, 45(9):870-881.

[86]RobertA, CipollaV, PrieurP, et al., 2022. MICROSCOPE satellite and its drag-free and attitude control system. Classical and Quantum Gravity, 39(20):204003.

[87]RosaP, KarayiannisTG, CollinsMW, 2009. Single-phase heat transfer in microchannels: the importance of scaling effects. Applied Thermal Engineering, 29(17-18):3447-3468.

[88]SaccocciaG, BerryG, 2000. European electric propulsion activities and programmes. Acta Astronautica, 47(2-9):193-203.

[89]SchleicherA, ZieglerT, SchubertR, et al., 2018. In-orbit performance of the LISA pathfinder drag-free and attitude control system. CEAS Space Journal, 10(4):471-485.

[90]SechiG, BuonocoreM, ComettoF, et al., 2011. In-flight results from the drag-free and attitude control of GOCE satellite. IFAC Proceedings Volumes, 44(1):733-740.

[91]SegismundoSFC, DanielBD, 1975. Mass center estimation of a drag-free satellite. IFAC Proceedings Volumes, 8(1):264-271.

[92]ShamsM, KhademMH, HossainpourS, 2009. Direct simulation of roughness effects on rarefied and compressible flow at slip flow regime. International Communications in Heat and Mass Transfer, 36(1):88-95.

[93]SinghS, D’AmicoS, PavoneM, 2015. High-fidelity modeling and control system synthesis for a drag-free microsatellite. Proceedings of the International Symposium on Space Flight Dynamics.

[94]SongPY, SunLM, KuangSY, et al., 2019. Micro-Newton electrospray thrusters for China’s space-borne gravitational wave detection mission (TianQin). Proceedings of the 36th International Electric Propulsion Conference.

[95]StrugarekD, SośnicaK, JäggiA, 2019. Characteristics of GOCE orbits based on satellite laser ranging. Advances in Space Research, 63(1):417-431.

[96]SukesanMK, ShineSR, 2021. Geometry effects on flow characteristics of micro-scale planar nozzles. Journal of Micromechanics and Microengineering, 31(12):125001.

[97]SunZX, LiZY, HeYL, et al., 2008. Coupled FVM-DSMC simulation of micro-nozzle with unstructured-grid. Proceedings of the International Conference on Nanochannels, Microchannels, and Minichannels, p.1437-1444.

[98]SunZX, LiZY, HeYL, et al., 2009. Coupled solid (FVM)-fluid (DSMC) simulation of micro-nozzle with unstructured-grid. Microfluidics and Nanofluidics, 7(5):621-631.

[99]TintoM, DeBraD, BuchmanS, et al., 2015. gLISA: geosynchronous laser interferometer space antenna concepts with off-the-shelf satellites. Review of Scientific Instruments, 86(1):014501.

[100]TummalaAR, DuttaA, 2017. An overview of cube-satellite propulsion technologies and trends. Aerospace, 4(4):58.

[101]VaradeV, DuryodhanVS, AgrawalA, et al., 2015. Low Mach number slip flow through diverging microchannel. Computers & Fluids, 111:46-61.

[102]WangDH, ZhuW, 2011. A phenomenological model for pre-stressed piezoelectric ceramic stack actuators. Smart Materials and Structures, 20(3):035018.

[103]WangDH, ZhuW, YangQ, 2011. Linearization of stack piezoelectric ceramic actuators based on Bouc-Wen model. Journal of Intelligent Material Systems and Structures, 22(5):401-413.

[104]WangEY, ZhangJX, LiHY, et al., 2021. Relative position model predictive control of double cube test-masses drag-free satellite with extended sliding mode observer. Mathematical Problems in Engineering, 2021:8887479.

[105]WangXD, LongJ, ZhuQ, et al., 2014. Drag-free control for cold air thrusters based on variable universe adaptive fuzzy PID. Proceedings of the IEEE International Conference on Information and Automation, p.159-163.

[106]WangYH, LongJ, WangT, et al., 2022. Identification modeling of micro thrust cold gas propulsion system. Proceedings of the 41st Chinese Control Conference, p.1480-1485.

[107]WangYK, MengLQ, XuXS, et al., 2021. Research on semi-physical simulation testing of inter-satellite laser interference in the China Taiji space gravitational wave detection program. Applied Sciences, 11(17):7872.

[108]WangZG, ZhaoH, DuanDY, et al., 2020. Application of improved active disturbance rejection control algorithm in tilt quad rotor. Chinese Journal of Aeronautics, 33(6):1625-1641.

[109]WeinertFM, KrausJA, FranoschT, et al., 2008. Microscale fluid flow induced by thermoviscous expansion along a traveling wave. Physical Review Letters, 100(16):164501.

[110]WenJM, 2009. Study on Planar Inertia Piezoelectric Moving Mechanism. PhD Thesis, Jilin University, Changchun, China(in Chinese).

[111]WuSF, EngelenCJH, ChuQP, et al., 2001. Fuzzy logic based attitude control of the spacecraft X-38 along a nominal re-entry trajectory. Control Engineering Practice, 9(7):699-707.

[112]XuW, PanL, GaoB, et al., 2017. Systematic study of packaging designs on the performance of CMOS thermoresistive micro calorimetric flow sensors. Journal of Micromechanics and Microengineering, 27(8):085001.

[113]XuXM, LiXC, ZhouJ, et al., 2017. Numerical and experimental analysis of cold gas microthruster geometric parameters by univariate and orthogonal method. Microsystem Technologies, 23(10):5003-5016.

[114]YangYX, TuLC, YangSQ, et al., 2012. A torsion balance for impulse and thrust measurements of micro-Newton thrusters. Review of Scientific Instruments, 83(1):015105.

[115]YuDR, NiuX, WangTB, et al., 2021. The developments of micro propulsion technology based on space gravitational wave detection task. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60(1-2):194-212 (in Chinese).

[116]ZengSH, YuanZY, ZhaoWW, et al., 2023. Numerical simulation of hypersonic thermochemical nonequilibrium flows using nonlinear coupled constitutive relations. Chinese Journal of Aeronautics, 36(3):63-79.

[117]ZhangBC, LiQL, WangY, et al., 2020. Experimental investigation of nitrogen flow boiling heat transfer in a single mini-channel. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(2):147-166.

[118]ZhangC, HeJW, DuanL, et al., 2019. Design of an active disturbance rejection control for drag-free satellite. Microgravity Science and Technology, 31(1):31-48.

[119]ZhangHN, DuanBR, WuLZ, et al., 2021. Development of a steady-state microthrust measurement stand for microspacecrafts. Measurement, 178:109357.

[120]ZhangJZ, LinJP, HuangD, et al., 2018. Numerical study of heat transfer characteristics of downward supercritical kerosene flow inside circular tubes. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(2):158-170.

[121]ZhangSH, YuXL, YanH, et al., 2017. Molecular tagging velocimetry of NH fluorescence in a high-enthalpy rarefied gas flow. Applied Physics B, 123(4):122.

[122]ZhangYH, WangYM, MaoQY, et al., 2016. Orbital reference frame estimation with power spectral density constraints for drag-free satellites. Chinese Journal of Aeronautics, 29(6):1721-1729.

[123]ZhouJJ, PangAP, LiuH, et al., 2022. Precision feedback control design of miniature microwave discharge ion thruster for space gravitational wave detection. Aerospace, 9(12):760.

[124]ZhuW, WangDH, 2012. Non-symmetrical Bouc-Wen model for piezoelectric ceramic actuators. Sensors and Actuators A: Physical, 181:51-60.

[125]ZieglerB, BlankeM, 2002. Drag-free motion control of satellite for high-precision gravity field mapping. Proceedings of the International Conference on Control Applications, p.292-297.

[126]ZiemerJK, RandolphTM, FranklinGW, et al., 2010. Colloid Micro-Newton Thrusters for the space technology 7 mission. Proceedings of the IEEE Aerospace Conference, p.1-19.

[127]ZouS, ChengZWT, ZhangX, et al., 2023. Ground-vibration suppression by a matched center of mass for microthrust testing in spaceborne gravitational-wave detection. Physical Review Applied, 19(2):024040.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE