CLC number:
On-line Access: 2025-05-30
Received: 2024-02-02
Revision Accepted: 2024-06-05
Crosschecked: 2025-05-30
Cited: 0
Clicked: 1198
Chunbiao GAN, Zijing LI, Yimin GE, Mengyue LU. COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics[J]. Journal of Zhejiang University Science A, 2025, 26(5): 492-498.
@article{title="COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics",
author="Chunbiao GAN, Zijing LI, Yimin GE, Mengyue LU",
journal="Journal of Zhejiang University Science A",
volume="26",
number="5",
pages="492-498",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400062"
}
%0 Journal Article
%T COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics
%A Chunbiao GAN
%A Zijing LI
%A Yimin GE
%A Mengyue LU
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 5
%P 492-498
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400062
TY - JOUR
T1 - COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics
A1 - Chunbiao GAN
A1 - Zijing LI
A1 - Yimin GE
A1 - Mengyue LU
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 5
SP - 492
EP - 498
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400062
Abstract: To date, in model-based gait-planning methods, the dynamics of the center of mass (COM) of bipedal robots have been analyzed by establishing their linear inverted pendulum model (LIPM) or extended forms. With regard to model-based gait-generation methods for uphill and downhill terrain, Kuo simulated human gait using an inverted pendulum, which provided a circular trajectory for the COM rather than a horizontal trajectory. He found that a horizontal COM trajectory consumed more muscle energy. Massah et al. utilized a 3D LIPM and the concept of zero moment point (ZMP). They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.
[1]ChoiY, KimD, OhY, et al., 2007. Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Transactions on Robotics, 23(6):1285-1293.
[2]EnglsbergerJ, OttC, RoaMA, et al., 2011. Bipedal walking control based on capture point dynamics. IEEE/RSJ International Conference on Intelligent Robots and Systems, p.4420-4427.
[3]EnglsbergerJ, OttC, Albu-SchäfferA, 2015. Three-dimensional bipedal walking control based on divergent component of motion. IEEE Transactions on Robotics, 31(2):355-368.
[4]HofAL, 2008. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Human Movement Science, 27(1):112-125.
[5]JoeHM, OhJH, 2018. Balance recovery through model predictive control based on capture point dynamics for biped walking robot. Robotics and Autonomous Systems, 105:1-10.
[6]KajitaS, HirukawaH, HaradaK, et al., 2014. Introduction to Humanoid Robotics. Springer, Berlin Heidelberg, Germany.
[7]KuoAD, 2007. The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Human Movement Science, 26(4):617-656.
[8]LiTHS, KuoPH, ChenLH, et al., 2022. Fuzzy double deep Q-network-based gait pattern controller for humanoid robots. IEEE Transactions on Fuzzy Systems, 30(1):147-161.
[9]MassahBA, SharifiKA, SalehiniaY, et al., 2012. An open loop walking on different slopes for NAO humanoid robot. Procedia Engineering, 41:296-304.
[10]OwakiD, KoyamaM, YamaguchiS, et al., 2010. A two-dimensional passive dynamic running biped with knees. IEEE International Conference on Robotics and Automation, p.5237-5242.
[11]ParkHY, KimJH, YamamotoK, 2022. A new stability framework for trajectory tracking control of biped walking robots. IEEE Transactions on Industrial Informatics, 18(10):6767-6777.
[12]PrattJ, CarffJ, DrakunovS, et al., 2006. Capture point: a step toward humanoid push recovery. The 6th IEEE-RAS International Conference on Humanoid Robots, p.200-207.
[13]XieHL, ZhaoXF, SunQC, et al., 2020. A new virtual-real gravity compensated inverted pendulum model and ADAMS simulation for biped robot with heterogeneous legs. Journal of Mechanical Science and Technology, 34(1):401-412.
[14]YamamotoK, KamiokaT, SugiharaT, 2020. Survey on model-based biped motion control for humanoid robots. Advanced Robotics, 34(21-22):1353-1369.
Open peer comments: Debate/Discuss/Question/Opinion
<1>