Full Text:   <788>

Summary:  <34>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-05-30

Received: 2024-02-02

Revision Accepted: 2024-06-05

Crosschecked: 2025-05-30

Cited: 0

Clicked: 1198

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chun-biao Gan

https://orcid.org/0000-0002-6597-5605

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.5 P.492-498

http://doi.org/10.1631/jzus.A2400062


COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics


Author(s):  Chunbiao GAN, Zijing LI, Yimin GE, Mengyue LU

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   cb_gan@zju.edu.cn

Key Words: 


Share this article to: More <<< Previous Article|

Chunbiao GAN, Zijing LI, Yimin GE, Mengyue LU. COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics[J]. Journal of Zhejiang University Science A, 2025, 26(5): 492-498.

@article{title="COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics",
author="Chunbiao GAN, Zijing LI, Yimin GE, Mengyue LU",
journal="Journal of Zhejiang University Science A",
volume="26",
number="5",
pages="492-498",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400062"
}

%0 Journal Article
%T COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics
%A Chunbiao GAN
%A Zijing LI
%A Yimin GE
%A Mengyue LU
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 5
%P 492-498
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400062

TY - JOUR
T1 - COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics
A1 - Chunbiao GAN
A1 - Zijing LI
A1 - Yimin GE
A1 - Mengyue LU
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 5
SP - 492
EP - 498
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400062


Abstract: 
To date, in model-based gait-planning methods, the dynamics of the center of mass (COM) of bipedal robots have been analyzed by establishing their linear inverted pendulum model (LIPM) or extended forms. With regard to model-based gait-generation methods for uphill and downhill terrain, Kuo simulated human gait using an inverted pendulum, which provided a circular trajectory for the COM rather than a horizontal trajectory. He found that a horizontal COM trajectory consumed more muscle energy. Massah et al. utilized a 3D LIPM and the concept of zero moment point (ZMP). They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform.

基于CP-ZMP-COM动力学的双足机器人质心轨迹规划及抗扰动控制

作者:甘春标1,2,李子静1,2,葛一敏1,2,卢梦月1,2
机构:1浙江大学机械工程学院,流体动力与机电系统国家重点实验室,中国杭州,310058;2浙江大学机械工程学院,浙江省先进制造技术重点实验室,中国杭州,310058
目的:通过对成人行走过程中矢状面与冠状面内质心轨迹的分析,本文探索双足机器人自由、灵活行走的步态规划方法,并实现对其受意外外力干扰下的稳定行走。
方法:在基于线性倒立摆模型的双足机器人运动控制中,质心、零力矩点和捕获点是实现双足机器人稳定行走的重要因素。1.通过对矢状面与冠状面内质心运动轨迹的分析,建立双足机器人CP-ZMP-COM动力学模型,由此计算期望的双足机器人质心、零力矩点和捕获点,进而提出一种改进的双足机器人质心轨迹规划方法;2.提出双足机器人在矢状面与冠状面内运动协调的抗扰动反馈补偿控制方法,对双足机器人质心和捕获点位置进行反馈补偿,使双足机器人质心和捕获点轨迹能够在后续支撑切换时逼近理想状态;3.通过小型双足机器人样机及其仿真模型,对改进的双足机器人质心轨迹规划方法及抗扰动反馈补偿控制方法进行行走仿真与实验验证。
结论:1.改进的双足机器人质心轨迹规划方法可用于实现小型双足机器人横行、斜行及原地转圈等灵活行走;2.基于所提出的抗扰动反馈补偿控制方法,小型双足机器人受随机脉冲外力下横行、斜行及原地转圈时仍能保持稳定而不摔倒。

关键词:双足机器人;CP-ZMP-COM动力学;质心轨迹规划;反馈补偿控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ChoiY, KimD, OhY, et al., 2007. Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Transactions on Robotics, 23(6):1285-1293.

[2]EnglsbergerJ, OttC, RoaMA, et al., 2011. Bipedal walking control based on capture point dynamics. IEEE/RSJ International Conference on Intelligent Robots and Systems, p.4420-4427.

[3]EnglsbergerJ, OttC, Albu-SchäfferA, 2015. Three-dimensional bipedal walking control based on divergent component of motion. IEEE Transactions on Robotics, 31(2):355-368.

[4]HofAL, 2008. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Human Movement Science, 27(1):112-125.

[5]JoeHM, OhJH, 2018. Balance recovery through model predictive control based on capture point dynamics for biped walking robot. Robotics and Autonomous Systems, 105:1-10.

[6]KajitaS, HirukawaH, HaradaK, et al., 2014. Introduction to Humanoid Robotics. Springer, Berlin Heidelberg, Germany.

[7]KuoAD, 2007. The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Human Movement Science, 26(4):617-656.

[8]LiTHS, KuoPH, ChenLH, et al., 2022. Fuzzy double deep Q-network-based gait pattern controller for humanoid robots. IEEE Transactions on Fuzzy Systems, 30(1):147-161.

[9]MassahBA, SharifiKA, SalehiniaY, et al., 2012. An open loop walking on different slopes for NAO humanoid robot. Procedia Engineering, 41:296-304.

[10]OwakiD, KoyamaM, YamaguchiS, et al., 2010. A two-dimensional passive dynamic running biped with knees. IEEE International Conference on Robotics and Automation, p.5237-5242.

[11]ParkHY, KimJH, YamamotoK, 2022. A new stability framework for trajectory tracking control of biped walking robots. IEEE Transactions on Industrial Informatics, 18(10):6767-6777.

[12]PrattJ, CarffJ, DrakunovS, et al., 2006. Capture point: a step toward humanoid push recovery. The 6th IEEE-RAS International Conference on Humanoid Robots, p.200-207.

[13]XieHL, ZhaoXF, SunQC, et al., 2020. A new virtual-real gravity compensated inverted pendulum model and ADAMS simulation for biped robot with heterogeneous legs. Journal of Mechanical Science and Technology, 34(1):401-412.

[14]YamamotoK, KamiokaT, SugiharaT, 2020. Survey on model-based biped motion control for humanoid robots. Advanced Robotics, 34(21-22):1353-1369.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE