CLC number: S51
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-01-20
Cited: 26
Clicked: 6684
Da-wei Xue, Mei-xue Zhou, Xiao-qin Zhang, Song Chen, Kang Wei, Fan-rong Zeng, Ying Mao, Fei-bo Wu, Guo-ping Zhang. Identification of QTLs for yield and yield components of barley under different growth conditions[J]. Journal of Zhejiang University Science B, 2010, 11(3): 169-176.
@article{title="Identification of QTLs for yield and yield components of barley under different growth conditions",
author="Da-wei Xue, Mei-xue Zhou, Xiao-qin Zhang, Song Chen, Kang Wei, Fan-rong Zeng, Ying Mao, Fei-bo Wu, Guo-ping Zhang",
journal="Journal of Zhejiang University Science B",
volume="11",
number="3",
pages="169-176",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900332"
}
%0 Journal Article
%T Identification of QTLs for yield and yield components of barley under different growth conditions
%A Da-wei Xue
%A Mei-xue Zhou
%A Xiao-qin Zhang
%A Song Chen
%A Kang Wei
%A Fan-rong Zeng
%A Ying Mao
%A Fei-bo Wu
%A Guo-ping Zhang
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 3
%P 169-176
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900332
TY - JOUR
T1 - Identification of QTLs for yield and yield components of barley under different growth conditions
A1 - Da-wei Xue
A1 - Mei-xue Zhou
A1 - Xiao-qin Zhang
A1 - Song Chen
A1 - Kang Wei
A1 - Fan-rong Zeng
A1 - Ying Mao
A1 - Fei-bo Wu
A1 - Guo-ping Zhang
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 3
SP - 169
EP - 176
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900332
Abstract: Waterlogging is a major abiotic stress limiting barley (Hordeum vulgare L.) yield and its stability in areas with excessive rainfall. Identification of genomic regions influencing the response of yield and its components to waterlogging stress will enhance our understanding of the genetics of waterlogging tolerance and the development of more tolerant barley cultivars. Quantitative trait loci (QTLs) for grain yield and its components were identified using 156 doubled haploid (DH) lines derived from a cross between the cultivars Yerong (waterlogging-tolerant) and Franklin (waterlogging-sensitive) grown under different conditions (waterlogged and well drained). A total of 31 QTLs were identified for the measured characters from two experiments with two growth environments. The phenotypic variation explained by individual QTLs ranged from 4.74% to 55.34%. Several major QTLs determining kernel weight (KW), grains per spike (GS), spikes per plant (SP), spike length (SL) and grain yield (GY) were detected on the same region of chromosome 2H, indicating close linkage or pleiotropy of the gene(s) controlling these traits. Some different QTLs were identified under waterlogging conditions, and thus different markers may have to be used in selecting cultivars suitable for high rainfall areas.
[1]Babu, R., Nair, S.K., Prasanna, B.M., Gupta, H.S., 2004. Integrating marker-assisted selection in crop breeding—prospects and challenges. Curr. Sci., 87(5):607-619.
[2]Backes, G., Graner, A., Foroughi-Wehr, B., Fischbeck, G., Wenzel, G., Jahoor, A., 1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of an RFLP map in barley (Hordeum vulgare L.). Theor. Appl. Genet., 90(2):294-302.
[3]Baghizadeh, A., Taleei, A.R., Naghavi, M.R., 2007. QTL analysis for some agronomic traits in barley (Hordeum vulgare L.). Int. J. Agric. Biol., 9:372-374.
[4]Baum, M., Grando, S., Backes, G., Jahoor, A., Sabbagh, A., Ceccarelli, S., 2003. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’×H. spontaneum 41-1. Theor. Appl. Genet., 107(7):1215-1225.
[5]Bezant, J., Laurie, D., Pratchett, N., Chojecki, J., Kearsey, M., 1997. Mapping QTLs controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol. Breed., 3(1):29-38.
[6]Fufa, F., Assefa, A., 1995. Response of barley to waterlogging: improved varieties versus local cultivars. IAR Newsl. Agric. Res., 10:6-7.
[7]Garthwaite, A.J., von Bothmer, R., Colmer, T.D., 2003. Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct. Plant Biol., 30(8):875-889.
[8]Hamachi, Y., Yoshino, M., Furusho, M., Yoshida, T., 1990. Index of screening for wet endurance in malting barley. Jpn. J. Breed., 40:361-366.
[9]Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmusson, D., Sorrells, M., Ullrich, S.E., et al., 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet., 87(3):392-401.
[10]Hori, K., Kobayashi, T., Shimizu, A., Sato, K., Takeda, K., Kawasaki, S., 2003. Efficient construction of high- density linkage map and its application to QTL analysis in barley. Theor. Appl. Genet., 107(5):806-813.
[11]Kjær, B., Jensen, J., 1996. Quantitative trait loci for grain yield and yield components in a cross between a sixrowed and a two-rowed barley. Euphytica, 90(1):39-48.
[12]Li, H.B., Vaillancourt, R., Mendham, N.J., Zhou, M.X., 2008. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics, 9(1):401.
[13]Li, J.Z., Huang, X.Q., Heinrich, F., Ganal, M.W., Röder, M.S., 2005. Analysis of quantitative trait loci for yield, yield components and malting quality in a BC3-DH population of spring barley. Theor. Appl. Genet., 110(2):356-363.
[14]Li, J.Z., Huang, X.Q., Heinrichs, F., Ganal, M.W., Röder, M.S., 2006. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome, 49(5):454-466.
[15]Marquez-Cedillo, L.A., Hayes, P.M., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E., Wesenberg, D.M., 2001. QTL analysis of agronomic traits in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor. Appl. Genet., 103(4):625-637.
[16]Mather, D., Tinker, N.A., LaBerge, D.E., Edney, M., Jones, B.L., Rossnagel, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E., et al., 1997. Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci., 37(2):544-554.
[17]McCouch, S.R., Cho, Y.G., Yano, M., Paul, E., Blinstrub, M., 1997. Report on QTL nomenclature. Rice Genet. Newsl., 14:11-13.
[18]Pang, J.Y., Zhou, M.X., Mendham, N., Shabala, S., 2004. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust. J. Agric. Res., 55(8):895-906.
[19]Pang, J.Y., Mendham, N., Zhou, M.X., Newman, I., Shabala, S., 2006. Microelectrode ion and O2 flux measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ., 29(6):1107-1121.
[20]Pang, J., Ross, J., Zhou, M.X., Mendham, N., Shabala, S., 2007a. Amelioration of detrimental effects of waterlogging by foliar nutrient sprays in barley. Funct. Plant Biol., 34(3):221-227.
[21]Pang, J.Y., Cuin, T., Shabala, S., Zhou, M.X., Mendham, N.J., Shabala, S., 2007b. Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiol., 145(1): 266-276.
[22]Pillen, K., Zacharias, A., Léon, J., 2003. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor. Appl. Genet., 107(2):340-352.
[23]Powell, W., Thomas, W.T.B., Baird, E., Lawrence, P., Booth, A., Harrower, B., McNicol, J.W., Waugh, R., 1997. Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity, 79(1):48-59.
[24]Qiu, J.D., Ke, Y., 1991. Study of determination of wet tolerance of 4572 barley germplasm resources. Acta Agric. Shanghai, 7(4):27-32 (in Chinese).
[25]Sameri, M., Takeda, K., Komatsuda, T., 2006. Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental- and occidental-type barley cultivars. Breed. Sci., 56(3):243-252.
[26]Setter, T.L., Waters, I., 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 253(1):1-34.
[27]Setter, T.L., Burgess, P., Waters, I., Kuo, J., 1999. Genetic Diversity of Barley and Wheat for Waterlogging Tolerance in Western Australia. In: Proceedings of the 9th Australian Barley Technical Symposium. Melbourne, Australian Barley Technical Symposium Inc.
[28]Takeda, K., Fukuyama, T., 1986. Variation and geographical distribution of varieties for flooding tolerance in barley seeds. Barley Genet. Newsl., 16:28-29.
[29]Thomas, W.T.B., Powell, W., Waugh, R., Chalmers, K.J., Barua, U.M., Jack, P., Lea, V., Forster, B.P., Swanston, J.S., Ellis, R.P., et al., 1995. Detection of quantitative trait loci for agronomic, yield, grain, and disease characters in spring barley (Hordeum vulgare L.). Theor. Appl. Genet., 91(6-7):1037-1047.
[30]Tinker, N.A., Mather, D.E., Rossnagel, B.G., Kasha, K.J., Kleinhofs, A., Hayes, P.M., Falk, D.E., Ferguson, T., Shugar, L.P., Legge, W.G., et al., 1996. Regions of the genome that affect agronomic performance in two-row barley. Crop Sci., 36:1053-1062.
[31]von Korff, M., Wang, H., Leon, J., Pillen, K., 2006. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor. Appl. Genet., 112(7):1221-1231.
[32]Wang, D.L., Zhu, J., Li, Z.K., Paterson, A.H., 1999. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor. Appl. Genet., 99(7-8):1255-1264.
[33]Wang, D.L., Zhu, J., Li, Z.K., Paterson, A.H., 2003. QTLMapper Version 1.6: A Computer Software for Mapping Quantitative Trait Loci (QTLs) with Additive Effects, Epistatic Effects and QTL×Environment Interactions. Available from http://ibi.zju.edu.cn/software/qtlmapper/index.htm [accessed on Oct. 12, 2008]
[34]Wang, S.G., He, L.R., Li, Z.W., Zeng, J.G., Chai, Y.R., Hou, L., 1996. A comparative study on the resistance of barley and wheat to waterlogging. Acta Agron. Sin., 22(2):228-232 (in Chinese).
[35]Wenzl, P., Li, H., Carling, J., Zhou, M., Raman, H., Paul, E., Hearnden, P., Maier, C., Xia, L., Caig, V., et al., 2006. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics, 7(1):206.
[36]Xiao, Y., Wei, K., Chen, J., Zhou, M., Zhang, G., 2005. Effects of waterlogging on photosynthesis and antioxidant enzyme activities of six barley genotypes with different waterlogging tolerance. Agric. Sci. China, 4(4):310-316.
[37]Xiao, Y., Wei, K., Chen, J., Zhou, M., Zhang, G., 2007. Genotypic difference in growth inhibition and yield loss in barley under waterlogging stress. J. Zhejiang Univ. Sci. (Agric. & Life Sci.), 33(5):525-532.
[38]Yin, X., Stam, P., Johan Dourleijn, C., Kropff, M.J., 1999. AFLP mapping of quantitative trait loci for yield determining physiological characters in spring barley. Theor. Appl. Genet., 99(1-2):244-253.
[39]Zhang, G., Tanakamaru, K., Abe, J., Morita, S., 2007. Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiol. Plant., 29(2):171-176.
[40]Zhou, M.X., Li, H.B., Mendham, N.J., 2007. Combining ability of waterlogging tolerance in barley. Crop Sci., 47(1):278-284.
[41]Zhu, H., Briceno, G., Dovel, R., Hayes, P.M., Liu, B.H., Liu, C.T., Ullrich, S.E., 1999. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor. Appl. Genet., 98(5):772-779.
Open peer comments: Debate/Discuss/Question/Opinion
<1>