CLC number: Q94
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-02-05
Cited: 5
Clicked: 6989
Zhuo-mei Chen, Ying-xu Chen, Guo-jian Du, Xi-lin Wu, Feng Li. Effects of 60-day NO2 fumigation on growth, oxidative stress and antioxidative response in Cinnamomum camphora seedlings[J]. Journal of Zhejiang University Science B, 2010, 11(3): 190-199.
@article{title="Effects of 60-day NO2 fumigation on growth, oxidative stress and antioxidative response in Cinnamomum camphora seedlings",
author="Zhuo-mei Chen, Ying-xu Chen, Guo-jian Du, Xi-lin Wu, Feng Li",
journal="Journal of Zhejiang University Science B",
volume="11",
number="3",
pages="190-199",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0910350"
}
%0 Journal Article
%T Effects of 60-day NO2 fumigation on growth, oxidative stress and antioxidative response in Cinnamomum camphora seedlings
%A Zhuo-mei Chen
%A Ying-xu Chen
%A Guo-jian Du
%A Xi-lin Wu
%A Feng Li
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 3
%P 190-199
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0910350
TY - JOUR
T1 - Effects of 60-day NO2 fumigation on growth, oxidative stress and antioxidative response in Cinnamomum camphora seedlings
A1 - Zhuo-mei Chen
A1 - Ying-xu Chen
A1 - Guo-jian Du
A1 - Xi-lin Wu
A1 - Feng Li
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 3
SP - 190
EP - 199
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0910350
Abstract: Objective: To study the oxidative stress and antioxidative response of Cinnamomum camphora seedlings exposed to nitrogen dioxide (NO2) fumigation. Methods: Measurements were made up of the growth, chlorophyll content, chlorophyll fluorescence, antioxidant system and lipid peroxidation of one-year-old C. camphora seedlings exposed to NO2 (0.1, 0.5, and 4 μl/L) fumigation in open top chambers over a period of 60 d. Results: After the first 30 d, 0.5 and 4.0 μl/L NO2 showed insignificant effects on the growth of C. camphora seedlings. However, exposure to 0.5 and 4.0 μl/L NO2 for 15 d significantly reduced their chlorophyll content (P<0.05), enhanced their malondialdehyde (MDA) content and superoxide dismutase (SOD) activity (P<0.05), and also significantly reduced the maximal quantum yield of PSII in the dark [the ratio of variable fluorescence to maximal fluorescence (Fv/Fm)] (P<0.05). In the latter 30 d, 0.5 μl/L NO2 showed a positive effect on the vitality of the seedlings, which was reflected by a recovery in the ratio of Fv/Fm and chlorophyll content, and obviously enhanced growth, SOD activity, ascorbate (AsA) content and glutathione reductase (GR) activity (P<0.05); 4.0 μl/L NO2 then showed a negative effect, indicated by significant reductions in chlorophyll content and the ratio of Fv/Fm, and inhibited growth (P<0.05). Conclusion: The results suggest adaptation of C. camphora seedlings to 60-d exposure to 0.1 and 0.5 μl/L NO2, but not to 60-d exposure to 4.0 μl/L NO2. C. camphora seedlings may protect themselves from injury by strengthening their antioxidant system in response to NO2-induced oxidative stress.
[1]Ashenden, T.W., 1970. The effects of long-term exposures to SO2 and NO2 pollution on the growth of Dactylis glomerata L. and Poapratensis L. Environ. Pollut., 18(4): 249-258.
[2]Ashenden, T.W., Bell, S.A., Rafarel, C.R., 1990. Effects of nitrogen dioxide pollution on the growth of three fern species. Environ. Pollut., 66(4):301-318.
[3]Barnes, J.D., Reiling, K., Davison, A.W., Renner, C.J., 1988. Interaction between ozone and winter stress. Environ. Pollut., 53(1-4):235-254.
[4]Calatayud, A., Barreno, E., 2001. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ. Pollut., 115(2): 283-289.
[5]Carrasco-Rodriguez, J.L., Valle-Tascon, S.D., 2001. Impact of elevated ozone on chlorophyll a fluorescence in field-grown oat (Avena sativa). Environ. Exp. Bot., 45(2): 133-142.
[6]Clyde Hill, A., Bennet, J.H., 1970. Inhibition of apparent photosynthesis by nitrogen oxides. Atmos. Environ., 4(4): 341-348.
[7]Darrall, N.M., Jäger, H.J., 1984. Biochemical Diagnostic Tests for the Effects of Air Pollution on Plants. In: Koziol, M.J., Whatley, F.R. (Eds.), Gaseous Air Pollutants and Plant Metabolism. Butterworth, London, p.333-350.
[8]Della-Torre, G., Ferranti, F., Lupattelli, M., Pocceschi, N., Figoli, A., Nali, C., Lorenzini, G., 1998. Effects of ozone on morpho-anatomy and physiology of Hedera helix. Chemosphere, 36(4-5):651-656.
[9]Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot., 32(1): 93-101.
[10]Dixon, R.A., Paiva, N.L., 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7):1085-1097.
[11]Edjolo, A., Laffray, D., Guerrier, G., 2001. The ascorbate-glutathione cycle in the cytosolic and chloroplastic fractions of drought-tolerant and drought-sensitive poplars. J. Plant Physiol., 158(12):1511-1517.
[12]Ella, E.S., Kawano, N., Ito, O., 2003. Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Sci., 165(1):85-93.
[13]Foyer, C.H., Halliwell, B., 1976. The presence of glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta, 133(1):21-25.
[14]Frankart, C., Eullaffroy, P., Vernet, G., 2002. Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol. Environ. Safety, 53(3):439-445.
[15]Genty, B., Harbinson, J., Briantais, J.M., Baker, N.R., 1990. The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem II photochemistry in leaves. Phytosynth. Res., 25(3):249-257.
[16]Guidi, L., Nali, C., Ciompi, S., Lorenzini, G., Soldatini, G.F., 1997. The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. J. Exp. Bot., 48(1): 173-179.
[17]Horemans, N., Foyer, C.H., Potters, G., Asard, H., 2000. Ascorbate function and associated transport systems in plants. Plant Physiol. Biochem., 38(7-8):531-540.
[18]Kuźniak, E., Skłodowska, M., 2001. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci., 160(4):723-731.
[19]Lee, E.H., Bennett, J.H., 1982. Superoxide dismutase, a possible protective enzyme against ozone injury in snap beans (Phaseolus vulgaris L.). Plant Physiol., 69(6): 1444-1449.
[20]Lai, Q.X., Bao, Z.Y., Zhu, Z.J., Qian, Q.Q., Mao, B.Z., 2007. Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified gerbera. J. Zhejiang Univ.-Sci B, 8(7):458-464.
[21]Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148:350-382.
[22]Liu, Y.G., Wang, X., Zeng, G.M., Qu, D., Gu, J., Zhou, M., Chai, L.Y., 2007. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere, 69(1):99-107.
[23]Maggs, R., Ashmore, M.R., 1998. Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environ. Pollut., 103(2-3):159-170.
[24]Makino, A., Osmond, B., 1991. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol., 96(2):355-362.
[25]Marie, B.A., Ormrod, D.P., 1984. Tomato plant growth with continuous exposure to sulphur dioxide and nitrogen dioxide. Environ. Pollut. (Ser. A), 33(3):257-265.
[26]Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot., 51(345):659-668.
[27]Mehlhorn, H., Óshea, J.M., Wellburn, A.R., 1991. Atmospheric ozone interacts with stress ethylene formation by plants to cause visible plant injury. J. Exp. Bot., 42(1): 17-24.
[28]Meloni, D.A., Oliva, M.A., Martinez, C.A., Cambraia, J., 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot., 49(1):69-76.
[29]Ministry of the Environmental Protection of the People’s Republic of China, 2007. EPA. Available from http://www.sepa.gov.cn/ztbd/sjhjr/2007hjr/tpbd56/200706/P020070625532626111313.pdf [accessed on Jan. 2, 2009] (in Chinese).
[30]Okano, K., Totsuka, T., Fukuzawa, T., Tazaki, T., 1985. Growth responses of plants to various concentrations of nitrogen dioxide. Environ. Pollut. (Ser. A), 38(4):361-373.
[31]Pan, L.Q., Ren, J.Y., Liu, J., 2006. Responses of antioxidant system and LPO level to benzo(a)pyrene and benzo(k)fluoranthene in the haemolymph of the scallop Chlamys ferrari. Environ. Pollut., 141(3):443-451.
[32]Pandey, J., Agrawal, M., 1994. Growth responses of tomato plants to low concentrations of sulphur dioxide and nitrogen dioxide. Scientia Horticulturae, 58(1-2):67-76.
[33]Pleijel, H., Skärby, L., Ojanperä, K., Selldén, G., 1994. Exposure of oats, Avena sativa L., to filtered and unfiltered air in open-top chambers: effects on grain yield and quality. Environ. Pollut., 86(2):129-134.
[34]Potters, G., Gara, L.D., Asard, H., Horemans, N., 2002. Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol. Biochem., 40(6-8): 537-548.
[35]Price, A., Lucas, P.W., Lea, P.J., 1990. Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J. Exp. Bot., 41(10):1309-1317.
[36]Qiao, Z., Murray, F., 1998. The effects of NO2 on the uptake and assimilation of nitrate by soybean plants. Environ. Exp. Bot., 39(1):33-40.
[37]Ra, H.S.Y., Geiser, L.H., Crang, R.F.E., 2005. Effects of season and low-level air pollution on physiology and element content of lichens from the U.S. Pacific Northwest. Sci. Total Environ., 343(1-3):155-167.
[38]Rai, V., Vajpayee, P., Singh, S.N., Mehrotra, S., 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci., 167(5):1159-1169.
[39]Ramge, P., Badeck, F.W., Plochl, M., 1993. Apoplastic antioxidants as decisive elimination factors within the uptake process of nitrogen dioxide into leaf tissues. New Phytol., 125(4):771-785.
[40]Rice-Evans, C.A., Miller, N.J., Paganga, G., 1996. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med., 20(7):933-956.
[41]Sabaratnam, S., Gupat, G., 1988. Effects of nitrogen dioxide on biochemical and physiological characteristics of soybean. Environ. Pollut., 55(2):149-158.
[42]Sabaratnam, S., Gupat, G., Mulchi, C., 1988. Effects of nitrogen dioxide on leaf chlorophyll and nitrogen content of soybean. Environ. Pollut., 51(2):113-120.
[43]Sakaki, T., Kondo, N., Sugahara, K., 1983. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol. Plantarum, 59(1):28-34.
[44]Shalata, A., Tal, M., 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant., 104(2):169-174.
[45]Shimazaki, K., Yu, S.W., Sakaki, T., Tanaka, K., 1992. Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol., 33(3):267-273.
[46]Smirnoff, N., 1996. The function and metabolism of ascorbic acid in plants. Ann. Bot., 78(6):661-669.
[47]Takahashi, M., Higaki, A., Nohno, M., Kamada, M., Okamura, Y., Matsui, K., Kitani, S., Morikawa, H., 2005. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere, 61(5): 633-639.
[48]Tian, D.L., Fu, X.P., Fang, X., Xiang, W.H., 2007. Effect of simulated acid rain on photosynthetic characteristics in Cinnamomum camphora seedlings. Scientia Silvae Sinicae, 43:29-35 (in Chinese).
[49]Walmsley, L., Ashmore, M.R., Bell, J.N.B., 1980. Adaptation of radish Raphanus sativus L. in response to continuous exposure to ozone. Environ. Pollut. (Ser. A), 23(3):165-177.
[50]Wu, Y.X., Tiedemann, A., 2002. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ. Pollut., 116(1):37-47.
[51]Yu, S.W., Li, L., Shimazaki, K., 1988. Response of spinach and kidneybean plants to nitrogen dioxide. Environ. Pollut., 55(1):1-13.
[52]Zeevaart, A.J., 1976. Some effects of fumigation plants for short periods with NO2. Environ. Pollut., 11(2):97-108.
[53]Zhang, L.L., Lin, Y.M., 2008. Tannins from Canarium album with potent antioxidant activity. J. Zhejiang Univ.-Sci. B, 9(5):407-415.
[54]Zheng, W.J., 1983. Chinese Tree Records. Volume 1, Chinese Forestry Press, Beijing, China, p.749 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>