CLC number: Q815
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-01-03
Cited: 5
Clicked: 6131
Xiao-yan Zhang, Yong Peng, Zhong-rui Su, Qi-he Chen, Hui Ruan, Guo-qing He. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08[J]. Journal of Zhejiang University Science B, 2013, 14(2): 132-143.
@article{title="Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08",
author="Xiao-yan Zhang, Yong Peng, Zhong-rui Su, Qi-he Chen, Hui Ruan, Guo-qing He",
journal="Journal of Zhejiang University Science B",
volume="14",
number="2",
pages="132-143",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200067"
}
%0 Journal Article
%T Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08
%A Xiao-yan Zhang
%A Yong Peng
%A Zhong-rui Su
%A Qi-he Chen
%A Hui Ruan
%A Guo-qing He
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 2
%P 132-143
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200067
TY - JOUR
T1 - Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08
A1 - Xiao-yan Zhang
A1 - Yong Peng
A1 - Zhong-rui Su
A1 - Qi-he Chen
A1 - Hui Ruan
A1 - Guo-qing He
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 2
SP - 132
EP - 143
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200067
Abstract: Biotransformation of phytosterol (PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper. The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology. androstenedione was the sole product in the fermentation broth catalyzed by the mutant M. neoaurum ZJUVN-08 strain. Results showed that molar ratio of hydroxypropyl-β;-cyclodextrin (HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production. By analyzing the statistical model of three-dimensional surface plot, the optimal process conditions were observed at 0.1 g/L inducer, pH 7.0, molar ratio of HP-β-CD to PS 1.92:1, 8.98 g/L PS, and at 120 h of incubation time. Under these conditions, the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized (5.99 g/L), while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized (84.03%). The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results. It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process.
[1]Cabral, J.M.S., Aires-Barros, M.R., Pinheiro, H., Prazeres, D.M.F., 1997. Biotransformation in organic media by enzymes and whole cells. J. Biotechnol., 59(1-2):133-143.
[2]Carvalho, F., Marques, M.P.C., de Carvalho, C.C.C.R., Cabral, J.M.S., Fernandes, P., 2009. Sitosterol bioconversion with resting cells in liquid polymer based systems. Biores. Technol., 100(17):4050-4053.
[3]Chen, Q.H., He, G.Q., Mokhtar, A.M.A., 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb. Technol., 30(5):667-672.
[4]Chen, Q.H., Fu, M.L., Liu, J., Zhang, H.F., He, G.Q., Ruan, H., 2008. Optimization of ultrasonic-assisted extraction (UAE) of betulin from white irch bark using response surface methodology. Ultrason. Sonochem., 16(5):599-604.
[5]Cruz, A., Fernandes, P., Cabral, J.M.S., Pinheiro, H.M., 2001. Whole-cell bioconversion of β-sitosterol in aqueous-oganic two-phase systems. J. Mol. Catal. B: Enzym., 11(4-6):579-585.
[6]de Brabandere, V.I., Thienpont, L.M., Stockl, D., de Leenheer, A.P., 1997. 13C-NMR and mass spectral data of steroids with a 17,17-dialkyl-l8-nor-l3(14)-ene substructure. J. Lipid Res., 38(4):780-789.
[7]Dogra, N., Qazi, G.N., 2001. Steroid biotransformation by different strains of Micrococcus sp. Folia Microiol., 46(1):17-20.
[8]Fernandes, P., Cabral, J.M.S., 2007. Phytosterols: applications and recovery methods. Biores. Technol., 98(12):2335-2350.
[9]Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H.M., Cabral, J.M.S., 2003. Microbial conversion of steroid compounds: recent developments. Enzyme Microb. Technol., 32(6):688-705.
[10]Ghosh, D., Hallenbeck, P.C., 2010. Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135. Bioresour. Technol., 101(6):1820-1825.
[11]Goswami, D., Sen, R., Basu, J.K., De, S., 2009. Maximization of bioconversion of castor oil into ricinoleic acid by response surface methodology. Bioresour. Technol., 100(18):4067-4073.
[12]Hegazy, M.E.F., Gamal-Eldeen, A.M., Ei-Halawany, A.M., Mohamed, A.E.H.H., Paré, P.W., 2012. Steroidal metabolites transformed by Marchantia polymorpha cultures block breast cancer estrogen biosynthesis. Cell Biochem. Biophys., 63(1):85-96.
[13]Hesselink, P.G.M., Vliet, S.V., Vries, H.D., Witholt, B., 1989. Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme Microb. Technol., 11(7):398-404.
[14]Huang, C.L., Chen, Y.R., Liu, W.H., 2006. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb. Technol., 39(2):296-300.
[15]Kim, P.Y., Pollard, D.J., Woodley, J.M., 2007. Substrate supply for effective biocatalysis. Biotechnol. Prog., 23(1):74-82.
[16]Kutney, J.P., Milanova, R.K., Vassilev, C.D., Stefanov, S.S., Nedelcheva, N.V., 2000. Process for the Microbial Conversion of Phytosterol to Androstenedione and Androstadienedione. US Patent 6071714.
[17]Lin, Y.L., Song, X., Fu, J., Lin, J.Q., Qu, Y.B., 2009. Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme sheld. Bioresour. Technol., 100(5):1864-1867.
[18]Liu, J., Fu, M.L., Chen, Q.H., 2010. Biotransformation optimization of betulin into betulinic acid production catalysed by cultured Armillaria luteo-virens sacc ZJUQH 100-6 cells. J. Appl. Microbiol., 110(1):90-97.
[19]Liu, Z.Q., Zhang, J.F., Zheng, Y.G., Shen, Y.C., 2007. Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. J. Appl. Microbiol., 104(3):861-872.
[20]Loftsson, T., Brewster, M.E., 1996. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci.-US, 85(10):1017-1025.
[21]Ma, Y.H., Wang, M., Fan, Z., Shen, Y.B., Zhang, L.T., 2009. The influence of host-guest inclusion complex formation on the biotransformation of cortisone acetate Δ1-dehydrogenation. J. Steroid Biochem. Mol. Biol., 117(4):146-151.
[22]Malaviya, A., Gomes, J., 2008. Androstenedione production by biotransformation of phytosterols. Biores. Technol., 99(15):6725-6737.
[23]Manosroi, A., Saowakhon, S., Manosroi, J., 2008. Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. J. Steroid Biochem., 108(1-2):132-136.
[24]Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Process and Product Optimization Using Designed Experiment. Wiley-Interscience Publication, New York, p.219-264.
[25]Nalluri, B.N., Chowdary, K.P.R., Murthy, K.V.R., Satyanarayana, V., Hayman, A.R., Becket, G., 2005. Inclusion complexation and dissolution properties of nimesulide. J. Incl. Phenom. Macrocycl. Chem., 53(1-2):103-110.
[26]Pérez, C., Falero, A., Duc, H.L., Balcinde, Y., Hung, B.R., 2006. A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J. Ind. Microbiol. Biotechnol., 148(8):719-723.
[27]Rodina, N.V., Molchanova, M.A., Voishvillo, N.E., Andryushina, V.A., Stytsenko, T.S., 2008. Conversion of phytosterols into androstenedione by Mycobacterium neoaurum. Appl. Biochem. Microbiol., 44(1):48-54.
[28]Roglič, U., Žnidaršič-Plazl, P., Plazl, L., 2005. The influence of β-cyclodextrin on the kinetics of progesterone transformation by Rhizopus nigricans. Biocatal. Biotransfor., 23(5):299-305.
[29]Roglič, U., Plazl, L., Žnidaršič-Plazl, P., 2007. Batch and continuous transformation of progesterone by Rhizopus nigricans pellets in the presence of β-cyclodextrin. Biocatal. Biotransfor., 25(1):16-23.
[30]Schimid, A., Kollmer, A., Mathys, R.G., Witholt, B., 1998. Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles, 2(3):249-256.
[31]Senanayake, S.P.J.N., Shahidi, F., 2002. Lipase-catalyzed incorporation of docosahexaenoic acid (DHA) into borage oil: optimization using response surface methodology. Food Chem., 77(1):115-123.
[32]Shen, Y.B., Wang, M., Zhang, L.T., Ma, Y.H., Ma, B., Zheng, Y., Liu, H., Luo, J.M., 2011. Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transformation Arthrobacter simplex and Mycobacterium sp. Appl. Microbiol. Biotechnol., 90(6):1995-2003.
[33]Simon, L.M., László, K., Vértesi, A., Bagi, K., Szajáni, B., 1998. Stability of hydrolytic enzymes in water-organic solvent systems. J. Mol. Catal. B: Enzym., 4(1-2):41-45.
[34]Sripalakit, P., Wichai, U., Saraphanchotiwitthaya, A., 2006. Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid-converting microbial strains. J. Mol. Catal. B: Enzym., 41(1-2):49-54.
[35]Staebler, A., Cruz, A., van der Goot, W., Pinheiro, H.M., Cabral, J.M.S., Fernandes, P., 2004. Optimization of androstenedione production in an organic-aqueous two-liquid phase system. J. Mol. Catal. B: Enzym., 29(1-6):19-23.
[36]Stefan, A., Palazzo, G., Ceglie, A., Panzavolta, E., Hochkoeppler, A., 2002. Water-in-oil microemulsions to sustain long-term viability of microbial cells in organic solvents. Biotechnol. Bioeng., 81(3):323-328.
[37]Stefanov, S., Yankov, D., Beschkov, V., 2006. Biotransformation of phytosterols to androstenedione in two phase water-oil systems. Chem. Biochem. Eng. Q, 20(4):421-427.
[38]Szejtli, J., 1998. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 98(5):1743-1754.
[39]Wang, Z.L., Zhao, F.S., Hao, X.Q., Chen, D.J., Li, D.T., 2004. Microbial transformation of hydrophobic compound in cloud point system. J. Mol. Catal. B: Enzym., 27(4-6):147-153.
[40]Wang, Z.L., Zhao, F.S., Chen, D.J., Li, D.T., 2006. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochem., 41(3):557-561.
[41]Wei, W., Fan, S.Y., Wang, F.Q., Wei, D.Z., 2010. A new steroid-transformation strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9α-hydroxylase in NwIB-01. Appl. Biochem. Biotechnol., 162(5):1446-1456.
[42]Zhang, L.T., Wang, M., Shen, Y.B., Ma, Y.H., Luo, J.M., 2009. Improvement of steroid biotransformation with hydroxypropyl-β-cyclodextrin induced complexation. Appl. Biochem. Biotechnol., 159(3):642-654.
Open peer comments: Debate/Discuss/Question/Opinion
<1>