CLC number: S831.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-09-24
Cited: 1
Clicked: 4547
Ping Yang, Jameel Ahmed Gandahi, Qian Zhang, Lin-li Zhang, Xun-guang Bian, Li Wu, Yi Liu, Qiu-sheng Chen. Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus[J]. Journal of Zhejiang University Science B, 2013, 14(10): 886-895.
@article{title="Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus",
author="Ping Yang, Jameel Ahmed Gandahi, Qian Zhang, Lin-li Zhang, Xun-guang Bian, Li Wu, Yi Liu, Qiu-sheng Chen",
journal="Journal of Zhejiang University Science B",
volume="14",
number="10",
pages="886-895",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300005"
}
%0 Journal Article
%T Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus
%A Ping Yang
%A Jameel Ahmed Gandahi
%A Qian Zhang
%A Lin-li Zhang
%A Xun-guang Bian
%A Li Wu
%A Yi Liu
%A Qiu-sheng Chen
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 10
%P 886-895
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300005
TY - JOUR
T1 - Quantitative changes of nitrergic neurons during postnatal development of chicken myenteric plexus
A1 - Ping Yang
A1 - Jameel Ahmed Gandahi
A1 - Qian Zhang
A1 - Lin-li Zhang
A1 - Xun-guang Bian
A1 - Li Wu
A1 - Yi Liu
A1 - Qiu-sheng Chen
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 10
SP - 886
EP - 895
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300005
Abstract: Objective: Information regarding the development of the enteric nervous system (ENS) is important for understanding the functional abnormalities of the gut. Because fertilized chicken eggs provide easy access to embryos, chicken models have been widely used to study embryonic development of myenteric plexus; however, no study has been focused on the postnatal period. The aim of this study was to perform a qualitative and quantitative analysis of the nitrergic neurons in the myenteric plexus of developing chickens in the postnatal period. Methods: Whole-mount preparations of the myenteric plexus were made in 7-d, 15-d, and 40-d old (adult) chickens of either sex (n=15). The myenteric plexus was studied after nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry using light microscopy, digital photography, and Image-Pro Plus 6.0 software. The numbers of positively stained neurons and ganglia were counted in the duodenum, jejunum, ileum, caecum, and colon in the different age groups. Data were expressed as mean±standard deviation (SD), and statistical analysis was performed using a one-way analysis of variance (ANOVA) test. Results: The positively stained neurons showed various morphologies and staining intensities, and formed bead-shaped and U-shaped arrangements in the myenteric plexus. The densities of neurons and ganglia increased with age. However, the number of positive neurons per ganglion increased. The number of NADPH-d-positive neurons was highest in the colon, followed by the ileum, the jejunum, the duodenum, and the caeca in all age groups. Conclusions: developmental changes in the myenteric plexus of chickens continue in the postnatal period, indicating that the maturation process of the gastrointestinal function is gradual. In addition, no significant difference is happening among different intestinal segments during postnatal development, suggesting that the function of different intestinal segments had been determined after birth.
[1]An, S., Xu, C., Xu, J., Liu, M., 2003. Comparison of NOS distribution in myenteric plexus of various segments of gatrointestinal tract of the mandarin vole, Microtus mandarinus. Chin. J. Neurosci., 19(5):313-317 (in Chinese).
[2]Azzena, G.B., Mancinelli, R., 1999. Nitric oxide regenerates the normal colonic peristaltic activity in mdx dystrophic mouse. Neurosci. Lett., 261(1-2):9-12.
[3]Bagyanszki, M., Roman, V., Fekete, E., 2000. Quantitative distribution of NADPH-diaphorase-positive myenteric neurons in different segments of the developing chicken small intestine and colon. Histochem. J., 32(11):679-684.
[4]Balaskas, C., Saffrey, M.J., Burnstock, G., 1995. Distribution of NADPH-diaphorase activity in the embryonic chicken gut. Anat. Embryol., 192(3):239-245.
[5]Belai, A., Schmidt, H., Hoyle, C., Hassall, C., Saffrey, M., Moss, J., Förstermann, U., Murad, F., Burnstock, G., 1992. Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci. Lett., 143(1-2):60-64.
[6]Bodi, N., Battonyai, I., Talapka, P., Fekete, E., Bagyanszki, M., 2009. Spatial pattern analysis of nitrergic neurons in the myenteric plexus of the duodenum of different mammalian species. Acta Biol. Hung., 60(4):347-358.
[7]Boeckxstaens, G.E., Pelckmans, P.A., Bult, H., Deman, J.G., Herman, A.G., van Maercke, Y.M., 1990. Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction. Eur. J. Pharmacol., 190(1-2):239-246.
[8]Burleigh, D.E., 1992. Ng-nitro-l-arginine reduces nonadrenergic, noncholinergic relaxations of human gut. Gastroenterology, 102(2):679-683.
[9]Cracco, C., Filogamo, G., 1994. Quantitative study of the NADPH-diaphorase positive myenteric neuron of the rat ileum. Neuroscience, 61(2):351-359.
[10]Cserni, T., Paran, S., Puri, P., 2007. New hypothesis on the pathogenesis of ileocecal intussusception. J. Pediatr. Surg., 42(9):1515-1519.
[11]Cserni, T., O′Donnel, A., Paran, S., Puri, P., 2009a. Correlation of enteric NADPH-d positive cell counts with the duration of incubation period in NADPH-d histochemistry. Pathol. Oncol. Res., 15(1):103-107.
[12]Cserni, T., Paran, S., Kanyari, Z., O′Donnell, A.M., Kutasy, B., Nemeth, N., Puri, P., 2009b. New insights into the neuromuscular anatomy of the ileocecal valve. Anat. Rec., 292(2):254-261.
[13]Dawson, T.M., Bredt, D.S., Fotuhi, M., Hwang, P.M., Snyder, S.H., 1991. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. PNAS, 88(17):7797-7801.
[14]Degiorgio, R., Parodi, J.E., Brecha, N.C., Brunicardi, F.C., Becker, J.M., Go, V.L.W., Sternini, C., 1994. Nitric oxide producing neurons in the monkey and human digestive system. J. Comp. Neurol., 342(4):619-627.
[15]Doxey, D.L., Pearson, G.T., Milne, E.M., Gilmour, J.S., Chisholm, H.K., 1995. The equine enteric nervous system-neuron characterization and disribution in adults and juveniles. Vet. Res. Commun., 19(6):433-449.
[16]Feher, E., Montagnese, C., 1994. Distribution and morphological features of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in intrinsic neurons of the oddi sphincter the cat. Neurosci. Lett., 170(1):114-116.
[17]Gabella, G., 1971. Neuron size and number in the myenteric plexus of the newborn and adult rat. J. Anat., 109(1):81.
[18]Gabella, G., 1987. The number of neurons in the small intestine of mice, guinea pigs and sheep. Neuroscience, 22(2):737-752.
[19]Hanani, M., Louzon, V., Udassin, R., Freund, H.R., Karmeli, F., Rachmilewitz, D., 1995. Nitric oxide-containing nerves in bowel segments of patients with Hirschsprung’s disease. J. Pediatr. Surg., 30(6):818-822.
[20]Hirakawa, H., Kobayashi, H., Obriain, D.S., Puri, P., 1995. Absence of NADPH-diaphorase activity in internal anal sphincter (IAS) achalasia. J. Pediatr. Gastr. Nutr., 20(1):54-58.
[21]Junquera, C., Martinez-Ciriano, C., Blasco, J., Aisa, J., Peg, M.T., Azanza, M.J., 1998. Distribution of NADPH diaphorase-positive neurons in the enteric nervous system of the rabbit intestine. Neurochem. Res., 23(10):1233-1240.
[22]Lalatta-Costerbosa, G., Mazzoni, M., Clavenzani, P., Di Guardo, G., Mazzuoli, G., Marruchella, G., de Grossi, L., Agrimi, U., Chiocchetti, R., 2007. Nitric oxide synthase immunoreactivity and NADPH-d histochemistry in the enteric nervous system of sarda breed sheep with different PrP genotypes in whole-mount and cryostat preparations. J. Histochem. Cytochem., 55(4):387-401.
[23]Liu, Y., Chen, Y., Wang, Z., 2007. Differences of AchE and NOS-positive neuron number and distribution in goat small intestine. J. China Agric. Univ., 12(2):10-14 (in Chinese).
[24]Llewellyn-Smith, I.J., Song, Z.M., Costa, M., Bredt, D.S., Snyder, S.H., 1992. Ultrastructural localization of nitric oxide synthese immunoreactivity in guinea-pig enteric neurons. Brain Res., 577(2):337-342.
[25]Nichols, K., Krantis, A., Staines, W., 1992. Histochemical localization of nitric oxide-synthxizing neurons and vascular sites in the guinea-pig intestine. Neuroscience, 51(4):791-799.
[26]O′Donnell, A.M., Bannigan, J., Puri, P., 2006. Differences in nitrergic innervation of the developing chick cloaca and colorectum. Pediatr. Surg. Int., 22(1):90-94.
[27]Okoye, J.O.A., 1985. Cases of intestinal intussusception in young fowls. Avian Pathol., 14(2):275-279.
[28]Pearson, G.T., 1994. Structural organization and neuropeptide distributions in the equine enteric nervous system: an immunohistochemical study using whole-mount preparations from the small intestine. Cell Tissue Res., 276(3):523-534.
[29]Rand, M.J., 1992. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuroeffector transmission. Clin. Exp. Pharmacol. Physiol., 19(3):147-169.
[30]Román, V., Bagyánszki, M., Krecsmárik, M., Horvath, A., Resch, B.Á., Fekete, É., 2004. Spatial pattern analysis of nitrergic neurons in the developing myenteric plexus of the human fetal intestine. Cytom. Part A, 57A(2):108-112.
[31]Rosselli, M., Keller, R., Dubey, R.K., 1998. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum. Reprod. Update, 4(1):3-24.
[32]Sandgren, K., Lin, Z., Svenningsen, A.F., Ekblad, E., 2003. Vasoactive intestinal peptide and nitric oxide promote survival of adult rat myenteric neurons in culture. J. Neurosci. Res., 72(5):595-602.
[33]Sri Paran, T., Rolle, U., Puri, P., 2009. Age-related changes in the myenteric plexus of the porcine bowel. J. Pediatr. Surg., 44(9):1771-1777.
[34]Stark, M.E., Bauer, A.J., Sarr, M.G., Szurszewski, J.H., 1993. Nitric oxide mediates inhibitory nerve input in human and canine jejunum. Gastroenterology, 104(2):398-409.
[35]Vanden Berghe, P., Coulie, B., Tack, J., Mawe, G., Schemann, M., Janssens, J., 1999. Neurochemical coding of myenteric neurons in the guinea-pig antrum. Cell Tissue Res., 297(1):81-90.
[36]Vanderwinden, J.M., Mailleux, P., Schiffmann, S.N., Vanderhaeghen, J.J., Delaet, M.H., 1992. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. New Engl. J. Med., 327(8):511-515.
[37]Wade, P.R., Gulbransen, B., Lieb, J., 2003. Age-related changes in motility and in nitrergic myenteric neurons in guinea pig distal colon. Gastroenterology, 124(3):A545-A545.
[38]Ward, S.M., Xue, C., Shuttleworth, C.W., Bredt, D.S., Snyder, S.H., Sanders, K.M., 1992. NADPH-diaphorase and nitric oxide synthase colocalization in enteric neurons of canine proximal colon. Am. J. Physiol., 263(2):G277-G284.
[39]Wester, T., O′Briain, D.S., Puri, P., 1999. Notable postnatal alterations in the myenteric plexus of normal human bowel. Gut, 44(5):666-674.
[40]Wittmeyer, V., Merrot, T., Mazet, B., 2010. Tonic inhibition of human small intestinal motility by nitric oxide in children but not in adults. Neurogastroent. Motil., 22(10):1078-e1282.
[41]Xiao, L., Cai, W.Q., Sun, Y., 1996. A light and electron microscope observation of NADPH-diaphorase in the jejumun myenteric plexus of rats. Acta Anat. Sin., 27(1):85-87 (in Chinese).
[42]Young, H.M., Furness, J.B., Sewell, P., Burcher, E.F., Kandiah, C.J., 1993. Total numbers of neurons in myenteric ganglia of the guinea-pig small intestine. Cell Tissue Res., 272(1):197-200.
[43]Zhang, Y., Teng, K., Zhang, H., Zhao, Q., Wang, R., Li, L., 2004. The morphological features of NADPH-diaphorase positive myenteric neurons of the postnatal piglets small intestine. Acta Vet. Zoot. Sin., 35(6):705-710 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>