Full Text:   <3472>

Summary:  <2191>

Suppl. Mater.: 

CLC number: Q522+.6

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-01-14

Cited: 5

Clicked: 6862

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.2 P.125-132

http://doi.org/10.1631/jzus.B1300179


Analysis of promoters of microRNAs from a Glycine max degradome library* #


Author(s):  Yi-qiang Han1, Zheng Hu2, Dian-feng Zheng3, Ya-mei Gao1

Affiliation(s):  1. College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; more

Corresponding email(s):   gaoym800@126.com

Key Words:  Glycine max , MicroRNA (miRNA), Promoter, Cis-acting element, Prediction


Yi-qiang Han, Zheng Hu, Dian-feng Zheng, Ya-mei Gao. Analysis of promoters of microRNAs from a Glycine max degradome library[J]. Journal of Zhejiang University Science B, 2014, 15(2): 125-132.

@article{title="Analysis of promoters of microRNAs from a Glycine max degradome library",
author="Yi-qiang Han, Zheng Hu, Dian-feng Zheng, Ya-mei Gao",
journal="Journal of Zhejiang University Science B",
volume="15",
number="2",
pages="125-132",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300179"
}

%0 Journal Article
%T Analysis of promoters of microRNAs from a Glycine max degradome library
%A Yi-qiang Han
%A Zheng Hu
%A Dian-feng Zheng
%A Ya-mei Gao
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 2
%P 125-132
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300179

TY - JOUR
T1 - Analysis of promoters of microRNAs from a Glycine max degradome library
A1 - Yi-qiang Han
A1 - Zheng Hu
A1 - Dian-feng Zheng
A1 - Ya-mei Gao
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 2
SP - 125
EP - 132
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300179


Abstract: 
Objective: MicroRNAs (miRNAs) are genome-encoded, small non-coding RNAs that play important functions in development, biotic and abiotic stress responses, and other processes. Our aim was to explore the regulation of miRNA expression. Methods: We used bioinformatics methods to predict the core promoters of 440 miRNAs identified from a soybean (Glycine max) degradome library and to analyze cis-acting elements for 369 miRNAs. Results: The prediction results showed that 83.86% of the 440 miRNAs contained promoters in their upstream sequences, and 8.64% (38 loci) in their downstream sequences. The distributions of two core promoter elements, TATA-boxes and transcription start sites (TSSs), were similar. The cis-acting elements were examined to provide clues to the function and regulation of spatiotemporal expression of the miRNAs. Analyses of miRNA cis-elements and targets indicated a potential auxin response factor (ARF)- and gibberellin response factor (GARF)-mediated negative feedback loop for miRNA expression. Conclusions: The features of miRNAs from a Glycine max degradome library obtained here provide insights into the transcription regulation and functions of miRNAs in soybean.

大豆降解组文库microRNAs的启动子分析

研究目的:通过分析miRNA的核心启动子和顺式作用元件为进一步解析大豆(Glycine max)miRNAs表达调控及其功能研究提供重要信息。
创新要点:利用生物信息学方法全面解析了大豆降解组文库miRNA的启动子特征,并依据顺式作用元件及靶基因构建了miRNA的表达与生长素响应因子、赤霉素响应因子之间存在潜在的负反馈调控网络。
研究方法:本研究利用TSSP 程序和PlantCARE数据库预测了来自大豆降解组文库的440个miRNA的核心启动子以及369个miRNAs的顺式作用元件,并依据顺式作用元件及靶基因构建miRNA调控网络。
重要结论:83.86%的miRNA在其上游序列中含有启动子,8.64%的miRNA在其下游序列中含有启动子,21.59%的miRNA包含增强子。核心启动子的TATA盒与转录起始位点(TSSs)的分布相似(见图2)。此外,对转录起始位点5'端的顺式作用元件预测为miRNAs的可能功能和表达的时空性提供了线索。miRNAs的顺式作用元件和靶基因的分析显示,部分miRNA的表达与生长素响应因子、赤霉素响应因子之间存在潜在的负反馈调控(见图3)。

关键词:大豆;MicroRNA(miRNA);启动子;顺式作用元件;预测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297. 


[2] Carrington, J.C., Ambros, V., 2003. Role of microRNAs in plant and animal development. Science, 301(5631):336-338. 


[3] Chen, R., Hu, Z., Zhang, H., 2009. Identification of microRNA in wild soybean (Glycine soja). J Integr Plant Biol, 51(12):1071-1079. 


[4] Chen, X., 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303(5666):2022-2025. 


[5] Cui, X., Xu, S.M., Mu, D.S., 2009. Genomic analysis of rice microRNA promoters and clusters. Gene, 431(1-2):61-66. 


[6] Goodstein, D.M., Shu, S., Howson, R., 2012. Phytozome: a comparative platform for green plant genomics. Nucl Acids Res, 40(D1):D1178-D1186. 


[7] Gou, J., Strauss, S.H., Tsai, C.J., 2010. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell, 22(3):623-639. 


[8] Guo, N., Ye, W.W., Wu, X.L., 2011. Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojaeGenome, 54(11):954-958. 


[9] Hu, Z., Jiang, Q., Ni, Z., 2013. Analyses of a Glycine max degradome library identify microRNA targets and microRNAs that trigger secondary siRNA biogenesis. J Integr Plant Biol, 55(2):160-176. 


[10] Jones-Rhoades, M.W., Bartel, D.P., 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14(6):787-799. 


[11] Jones-Rhoades, M.W., Bartel, D.P., Bartel, B., 2006. MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol, 57(1):19-53. 


[12] Kulcheski, F.R., de Oliveira, L.F., Molina, L.G., 2011. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 12(1):307


[13] Lee, Y., Kim, M., Han, J., 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23(20):4051-4060. 


[14] Lescot, M., Dehais, P., Thijs, G., 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 30(1):325-327. 


[15] Li, H., Dong, Y., Yin, H., 2011. Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol, 11(1):170


[16] Liu, H.H., Tain, X., Li, Y.J., 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thalianaRNA, 14(5):836-843. 


[17] Liu, P.P., Montgomery, T.A., Fahlgren, N., 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J, 52(1):133-146. 


[18] Liu, Y.X., Han, Y.P., Chang, W., 2010. Genomic analysis of microRNA promoters and their cis-acting elements in soybean. Agric Sci China, 9(11):1561-1570. 


[19] Llave, C., Xie, Z., Kasschau, K.D., 2002. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589):2053-2056. 


[20] Lu, S., Sun, Y.H., Shi, R., 2005. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from ArabidopsisPlant Cell, 17(8):2186-2203. 


[21] Mallory, A.C., Bartel, D.P., Bartel, B., 2005. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 17(5):1360-1375. 


[22] Megraw, M., Baev, V., Rusinov, V., 2006. MicroRNA promoter element discovery in ArabidopsisRNA, 12(9):1612-1619. 


[23] Schmutz, J., Cannon, S.B., Schlueter, J., 2010. Genome sequence of the palaeopolyploid soybean. Nature, 463(7278):178-183. 


[24] Shahmuradov, I.A., Solovye, V.V., Gammerman, A.J., 2005. Plant promoter prediction with confidence estimation. Nucl Acids Res, 33(3):1069-1076. 


[25] Shamimuzzaman, M., Vodkin, L., 2012. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing. BMC Genomics, 13(1):310


[26] Smale, S.T., 2001. Core promoters: active contributors to combinatorial gene regulation. Genes Dev, 15(19):2503-2508. 


[27] Song, Q.X., Liu, Y.F., Hu, X.Y., 2011. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol, 11(1):5


[28] Wang, J.W., Wang, L.J., Mao, Y.B., 2005. Control of root cap formation by microRNA-targeted auxin response factors in ArabidopsisPlant Cell, 17(8):2204-2216. 


[29] Wang, Y., Li, P., Cao, X., 2009. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun, 378(4):799-803. 


[30] Wong, C.E., Zhao, Y.T., Wang, X.J., 2011. MicroRNAs in the shoot apical meristem of soybean. J Exp Bot, 62(8):2495-2506. 


[31] Wu, M.F., Tian, Q., Reed, J.W., 2006.  Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 133(21):4211-4218. 


[32] Xie, Z., Allen, E., Fahlgren, N., 2005. Expression of Arabidopsis MIRNA genes. Plant Physiol, 138(4):2145-2154. 


[33] Xie, Z.X., Khanna, K., Ruan, S., 2010. Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol, 21(8):790-797. 


[34] Zeng, H.Q., Zhu, Y.Y., Huang, S.Q., 2010. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol, 167(15):1289-1297. 


[35] Zeng, Q.Y., Yang, C.Y., Ma, Q.B., 2012. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol, 12(1):182


[36] Zhang, B., Pan, X., Stellwag, E.J., 2008. Identification of soybean microRNAs and their targets. Planta, 229(1):161-182. 


[37] Zhang, Y., Li, Y.K., 2013. MicroRNAs in the regulation of immune response against infections. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(1):1-7. 


[38] Zhao, C.Z., Xia, H., Frazier, T.P., 2010. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol, 10(1):3


[39] Zhou, X., Ruan, J., Wang, G., 2007. Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol, 3(3):e37


[40] Zhu, Q.W., Luo, Y.P., 2013. Identification of miRNAs and their targets in tea (Camellia sinensis). J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(10):916-923. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE