Full Text:   <3166>

CLC number: Q936; S85

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-21

Cited: 1

Clicked: 6613

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.9 P.776-787

http://doi.org/10.1631/jzus.B1400023


A homolog of glyceraldehyde-3-phosphate dehydrogenase from Riemerella anatipestifer is an extracellular protein and exhibits biological activity*


Author(s):  Ji-ye Gao, Cui-lian Ye, Li-li Zhu, Zhi-ying Tian, Zhi-bang Yang

Affiliation(s):  . Department of Basic Medicine, Chongqing Medical University, Chongqing 400016, China

Corresponding email(s):   dryangfm365@sina.com

Key Words:  Riemerella anatipestifer , Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Extracellular protein


Ji-ye Gao, Cui-lian Ye, Li-li Zhu, Zhi-ying Tian, Zhi-bang Yang. A homolog of glyceraldehyde-3-phosphate dehydrogenase from Riemerella anatipestifer is an extracellular protein and exhibits biological activity[J]. Journal of Zhejiang University Science B, 2014, 15(9): 776-787.

@article{title="A homolog of glyceraldehyde-3-phosphate dehydrogenase from Riemerella anatipestifer is an extracellular protein and exhibits biological activity",
author="Ji-ye Gao, Cui-lian Ye, Li-li Zhu, Zhi-ying Tian, Zhi-bang Yang",
journal="Journal of Zhejiang University Science B",
volume="15",
number="9",
pages="776-787",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400023"
}

%0 Journal Article
%T A homolog of glyceraldehyde-3-phosphate dehydrogenase from Riemerella anatipestifer is an extracellular protein and exhibits biological activity
%A Ji-ye Gao
%A Cui-lian Ye
%A Li-li Zhu
%A Zhi-ying Tian
%A Zhi-bang Yang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 9
%P 776-787
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400023

TY - JOUR
T1 - A homolog of glyceraldehyde-3-phosphate dehydrogenase from Riemerella anatipestifer is an extracellular protein and exhibits biological activity
A1 - Ji-ye Gao
A1 - Cui-lian Ye
A1 - Li-li Zhu
A1 - Zhi-ying Tian
A1 - Zhi-bang Yang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 9
SP - 776
EP - 787
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400023


Abstract: 
Riemerella anatipestifer is the causative agent of septicemia anserum exsudativa in ducks. Its pathogenesis and virulence factors are still unclear. The glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an anchorless and multifunctional protein on the surface of several pathogenic microorganisms, is involved in virulence and adhesion. Whether homologs of GAPDH exist, and display similar characteristics in R. anatipestifer (RaGAPDH) has not been determined. In our research, the RaGAPDH activity from various R. anatipestifer isolates was confirmed. Twenty-two gapdh genes from genomic DNA of R. anatipestifer isolates were cloned and sequenced for phylogenetic analysis. The distribution of RaGAPDH in R. anatipestifer CZ2 strain was confirmed by antisera to recombinant RaGAPDH. The ability of purified RaGAPDH to bind host proteins was analyzed by solid-phase ligand-binding assay. Results revealed that all R. anatipestifer isolates showed different levels of GAPDH activity except four strains, which contained a gapdh-like gene. The gapdh of R. anatipestifer, which is located phylogenetically in the same branch as enterohemorrhagic Escherichia coli (EHEC), belonged to class I GAPDH, and encoded a 36.7-kDa protein. All RaGAPDH-encoding gene sequences from field isolates of R. anatipestifer displayed 100% homology. The RaGAPDH localized on the extracellular membrane of several R. anatipestifer strains. Further, it was released into the culture medium, and exhibited GAPDH enzyme activity. We also confirmed the binding of RaGAPDH to plasminogen and fibrinogen. These results demonstrated that GAPDH was present in R. anatipestifer, although not in all strains, and that RaGAPDH might contribute to the microorganism’s virulence.

鸭疫里默氏杆菌的GAPDH同源体:一种有生物活性的胞外蛋白

研究目的:对鸭疫里默氏杆菌的三磷酸甘油醛脱氢酶(GAPDH)进行鉴定和生物学特征分析。
创新要点:首次证实鸭疫里默氏杆菌具有GAPDH的同源体酶(RaGAPDH)是一种无信号肽和跨膜区的胞外蛋白酶,具有将3-磷酸甘油醛转化为1,3-二磷酸甘油酸的活性,可与纤维蛋白溶酶原及纤维蛋白原发生结合,推测该酶可能是鸭疫里默氏杆菌的一个新发现的毒力因子。
研究方法:1.对分离自重庆、四川地区的鸭疫里默氏杆菌(表1)菌体细胞表面蛋白(图1a)和CZ2、SC12、YC1三株菌胞外蛋白(图1b)的GAPDH活性进行检测,对其编码基因进行PCR鉴定(图2)和克隆测序分析 (图3);2.采用染色体步移技术获得CZ2的GAPDH编码基因进行原核表达(图4a和4c);3.以获得的具有活性的重组GAPDH为抗原,制备鼠原多克隆抗体并采用Western-blot方法对鸭疫里默氏杆菌的胞外分泌蛋白进行检测分析(图4b);4.采用固相配体结合试验检测RaGAPDH与纤维蛋白溶酶原、血纤维蛋白原、肌动蛋白和纤连蛋白的结合作用(图5)。
重要结论:鸭疫里默氏杆菌具有三磷酸甘油醛脱氢酶同源体,具有GAPDH活性,能与纤维蛋白溶酶原和血纤维蛋白原结合,可能是其重要的毒力因子。
鸭疫里默氏杆菌;三磷酸甘油醛脱氢酶;胞外蛋白

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Aguilera, L., Ferreira, E., Gimenez, R., 2012. Secretion of the housekeeping protein glyceraldehyde-3-phosphate dehydrogenase by the LEE-encoded type III secretion system in enteropathogenic Escherichia coliInt J Biochem Cell Biol, 44(6):955-962. 


[2] Alvarez, A.H., Martinez-Cadena, G., Silva, M.E., 2007.  Entamoeba histolytica: ADP-ribosylation of secreted glyceraldehyde-3-phosphate dehydrogenase. Exp Parasitol, 117(4):349-356. 


[3] Bergmann, S., Rohde, M., Hammerschmidt, S., 2004. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun, 72(4):2416-2419. 


[4] Chang, C.F., Hung, P.E., Chang, Y.F., 1998. Molecular characterization of a plasmid isolated from Riemerella anatipestiferAvian Pathol, 27(4):339-345. 


[5] Colell, A., Ricci, J.E., Tait, S., 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell, 129(5):983-997. 


[6] Crasta, K.C., Chua, K.L., Subramaniam, S., 2002. Identification and characterization of CAMP cohemolysin as a potential virulence factor of Riemerella anatipestiferJ Bacteriol, 184(7):1932


[7] Daubenberger, C.A., Pltl-Frank, F., Jiang, G., 2000. Identification and recombinant expression of glyceraldehyde-3-phosphate dehydrogenase of Plasmodium falciparumGene, 246(1-2):255-264. 


[8] Egea, L., Aguilera, L., Gimenez, R., 2007. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int J Biochem Cell Biol, 39(6):1190-1203. 


[9] Eichenbaum, Z., Green, B.D., Scott, J.R., 1996. Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase. Infect Immun, 64(8):1956-1960. 


[10] Elkhalfi, B., Araya-Garay, J.M., Rodriguez-Castro, J., 2013. Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Prot Expr Purif, 89(2):146-155. 


[11] Figge, R.M., Schubert, M., Brinkmann, H., 1999. Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer. Mol Biol Evol, 16(4):429-440. 


[12] Hu, Q., Han, X., Zhou, X., 2011. OmpA is a virulence factor of Riemerella anatipestiferVet Microbiol, 150(3-4):278-283. 


[13] Jin, H., Song, Y.P., Boel, G., 2005. Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol, 350(1):27-41. 


[14] Kenny, B., Finlay, B.B., 1995. Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. PNAS, 92(17):7991-7995. 


[15] Leavitt, S., Ayroud, M., 1997.  Riemerella anatipestifer infection of domestic ducklings. Can Vet J, 38(2):113

[16] Lenz, L.L., Mohammadi, S., Geissler, A., 2003. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. PNAS, 100(21):12432-12437. 


[17] Ling, E., Feldman, G., Portnoi, M., 2004. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol, 138(2):290-298. 


[18] Lottenberg, R., Broder, C.C., Boyle, M.D., 1992. Cloning, sequence analysis, and expression in Escherichia coli of a streptococcal plasmin receptor. J Bacteriol, 174(6):5204-5210. 


[19] Mavromatis, K., Lu, M., Misra, M., 2011. Complete genome sequence of Riemerella anatipestifer type strain (ATCC 11845). Stand Genomic Sci, 4(2):144-153. 


[20] Modun, B., Williams, P., 1999. The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun, 67(3):1086-1092. 


[21] Modun, B., Morrissey, J., Williams, P., 2000. The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol, 8(5):231-237. 


[22] Nagradova, N.K., 2001. Study of the properties of phosphorylating D-glyceraldehyde-3-phosphate dehydro-genase. Biochemistry (Moscow), 66(10):1067-1076. 


[23] Pancholi, V., Fischetti, V.A., 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med, 176(2):415-426. 


[24] Pancholi, V., Fischetti, V.A., 1997. Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: signal transduction between streptococci and pharyngeal cells. J Exp Med, 186(10):1633-1643. 


[25] Pancholi, V., Chhatwal, G.S., 2003. Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol, 293(6):391-401. 


[26] Parker, A.E., Bermudez, L.E., 2000. Sequence and characterization of the glyceraldehyde-3-phosphate dehydrogenase of Mycobacterium avium: correlation with an epidermal growth factor binding protein. Microb Pathog, 28(3):135-144. 


[27] Pathanasophon, P., Sawada, T., Tanticharoenyos, T., 1995. New serotypes of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol, 24(1):195-199. 


[28] Pathanasophon, P., Phuektes, P., Tanticharoenyos, T., 2002. A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol, 31(3):267-270. 


[29] Schaumburg, J., Diekmann, O., Hagendorff, P., 2004. The cell wall subproteome of Listeria monocytogenesProteomics, 4(10):2991-3006. 


[30] Segers, P., Mannheim, W., Vancanneyt, M., 1993.  Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int J Syst Evol Microbiol, 43(4):768-776. 


[31] Seifert, K.N., McArthur, W.P., Bleiweis, A.S., 2003. Characterization of group B streptococcal glyceraldehyde-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein-protein interactions. Can J Microbiol, 49(5):350-356. 


[32] Sirover, M.A., 2011. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta, 1810(8):741-751. 


[33] Subramaniam, S., Chua, K.L., Tan, H.M., 1997. Phylogenetic position of Riemerella anatipestifer based on 16S rRNA gene sequences. Int J Syst Bacteriol, 47(2):562-565. 


[34] Subramaniam, S., Huang, B., Loh, H., 2000. Characterization of a predominant immunogenic outer membrane protein of Riemerella anatipestiferClin Diagn Lab Immunol, 7(2):168-174. 


[35] Terao, Y., Yamaguchi, M., Hamada, S., 2006. Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem, 281(20):14215-14223. 


[36] Tsai, H.J., Liu, Y.T., Tseng, C.S., 2005. Genetic variation of the ompA and 16S rRNA genes of Riemerella anatipestiferAvian Pathol, 34(1):55-64. 


[37] Tunio, S.A., Oldfield, N.J., Ala'Aldeen, D.A., 2010. The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiol, 10(1):280


[38] Winram, S.B., Lottenberg, R., 1996. The plasmin-binding protein Plr of group A streptococci is identified as glyceraldehyde-3-phosphate dehydrogenase. Microbiology, 142(8):2311-2320. 


[39] Winram, S.B., Lottenberg, R., 1998. Site-directed mutagenesis of streptococcal plasmin receptor protein (Plr) identifies the C-terminal Lys334 as essential for plasmin binding, but mutation of the plr gene does not reduce plasmin binding to group A streptococci. Microbiology, 144(8):2025-2035. 


[40] Yuan, J., Liu, W., Sun, M., 2011. Complete genome sequence of the pathogenic bacterium Riemerella anatipestifer strain RA-GD. J Bacteriol, 193(11):2896-2897. 


[41] Yuan, J., Li, L., Sun, M., 2013. Genome sequence of avirulent Riemerella anatipestifer strain RA-SG. Genome Announc, 1(2):e0021812


[42] Zheng, L., Roeder, R.G., Luo, Y., 2003. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114(2):255-266. 


[43] Zhou, Z., Peng, X., Xiao, Y., 2010. Genome sequence of poultry pathogen Riemerella anatipestifer strain RA-YM. J Bacteriol, 193(5):1284-1285. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE