Full Text:   <5471>

Summary:  <2266>

Suppl. Mater.: 

CLC number: S667.6

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-10-15

Cited: 4

Clicked: 8783

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.11 P.997-1005

http://doi.org/10.1631/jzus.B1400051


Development of 107 SSR markers from whole genome shotgun sequences of Chinese bayberry (Myrica rubra) and their application in seedling identification* #


Author(s):  Hui-min Jia1, Yu-tong Shen1, Yun Jiao1, Guo-yun Wang2, Xiao Dong1, Hui-juan Jia1, Fang Du1, Sen-miao Liang3, Chao-chao Zhou4, Wei-hua Mao5, Zhong-shan Gao1

Affiliation(s):  1. Department of Horticulture, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   gaozhongshan@zju.edu.cn

Key Words:  Chinese bayberry, Simple sequence repeat (SSR), Genetic diversity



Abstract: 
chinese bayberry (Myrica rubra Sieb. et Zucc.) is one of the important subtropical fruit crops native to the South of China and Asian countries. In this study, 107 novel simple sequence repeat (SSR) molecular markers, a powerful tool for genetic diversity studies, cultivar identification, and linkage map construction, were developed and characterized from whole genome shotgun sequences. M13 tailing for forward primers was applied as a simple method in different situations. In total, 828 alleles across 45 accessions were detected, with an average of 8 alleles per locus. The number of effective alleles ranged from 1.22 to 10.41 with an average of 4.08. The polymorphic information content (PIC) varied from 0.13 to 0.89, with an average of 0.63. Moreover, these markers could also be amplified in their related species Myrica cerifera (syn. Morella cerifera) and Myrica adenophora. Seventy-eight SSR markers can be used to produce a genetic map of a cross between ‘Biqi’ and ‘Dongkui’. A neighbor-joining (NJ) tree was constructed to assess the genetic relationships among accessions, and the elite accessions ‘Y2010-70’, ‘Y2012-140’, and ‘Y2012-145’, were characterized as potential new genotypes for cultivation.

References

[1] Bao, J.S., Cai, Y.Z., Sun, M., 2005. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem, 53(6):2327-2332. 


[2] Celton, J.M., Tustin, D., Chagn, D., 2009. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes, 5(1):93-107. 


[3] Chai, C.Y., Xu, S.Q., Zhou, H.F., 2012. Studies on pollination and metaxenia of Myrica rubraJ Fujian For Sci Tech, (in Chinese),39(4):30-33. 


[4] Chen, K.S., Xu, C.J., Zhang, B., 2004. Red bayberry: botany and horticulture. Horticultural Reviews, John Wiley & Sons, Inc.,30:83-114. 


[5] Emanuelli, F., Lorenzi, S., Grzeskowiak, L., 2013. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol, 13:39


[6] Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4):783-791. 

[7] Frascaroli, E., Schrag, T.A., Melchinger, A.E., 2013. Genetic diversity analysis of elite european maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet, 126(1):133-141. 


[8] Handa, T., Kajiura, I., 1991. Isozyme analysis of yamamomo (Myrica rubra Sieb. et Zucc.) cultivars. Jpn J Breed, 41(2):203-209. 


[9] Huang, Y.H., Yu, W.S., Guo, Z.H., 2013. A new Chinese bayberry cultivar ‘Zijing’. Acta Hort Sin, (in Chinese),4(4):791-792. 

[10] Jiao, Y., Jia, H.M., Li, X.W., 2012. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genomics, 13:201


[11] Jiao, Y., Wang, G.Y., Chai, C.Y., 2013. Morphology of pollen grains from the plant with different type of sex by scanning electron microscope (SEM) and the viablity of pollens in red bayberry. South China Fruits, (in Chinese),42(1):12-15. 

[12] Liu, K., Muse, S.V., 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9):2128-2129. 


[13] Peakall, R., Smouse, P.E., 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes, 6(1):288-295. 


[14] Qi, X.J., Liang, S.M., Zheng, X.L., 2003. A new Chinese bayberry cultivar ‘Zaoqimimei’. Acta Hort Sin, (in Chinese),30(6):759

[15] Rauscher, G., Simko, I., 2013. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biol, 13(1):11


[16] Terakawa, M., Kikuchi, S., Kanetani, S., 2006. Characterization of 13 polymorphic microsatellite loci for an evergreen tree, Myrica rubraMol Ecol Notes, 6(3):709-711. 


[17] Testolin, R., Marrazzo, T., Cipriani, G., 2000. Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 43(3):512-520. 


[18] van de Peer, Y., de Wachter, R., 1994. TREECON for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci, 10(5):569-570. 


[19] Wang, H.Y., Gao, Z.S., Yang, Z.W., 2012. Anaphylaxis and generalized urticaria in a woman eating Chinese bayberry fruit. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 13(10):851-854. 


[20] Wrschum, T., Langer, S.M., Longin, C.F.H., 2013. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet, 126(6):1477-1486. 


[21] Xie, R.J., Zhou, J., Wang, G.Y., 2011. Cultivar identification and genetic diversity of Chinese bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Mol Biol Rep, 29(3):554-562. 


[22] Yue, X.Y., Liu, G.Q., Zong, Y., 2014. Development of genic SSR markers from transcriptome sequencing of pear buds. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(4):303-312. 


[23] Zhang, B., Kang, M.X., Xie, Q.P., 2011. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J Agric Food Chem, 59(2):537-545. 


[24] Zhang, S.M., Xu, C.J., Gao, Z.S., 2009. Development and characterization of microsatellite markers for Chinese bayberry (Myrica rubra Sieb. & Zucc.). Conserv Genet, 10(5):1605-1607. 


[25] Zhang, S.M., Gao, Z.S., Xu, C.J., 2009. Genetic diversity of Chinese bayberry (Myrica rubra Sieb. et Zucc.) accessions revealed by amplified fragment length polymorphism. Hortscience, 44(2):487-491. 

[26] Zhang, S.Y., Li, X., Feng, C., 2012. Development and characterization of 109 polymorphic EST-SSRs derived from the Chinese bayberry (Myrica rubra, Myricaceae) transcriptome. Am J Bot, 99(12):e501-e507. 


[27] Zhang, W.S., Chen, K.S., Zhang, B., 2005. Postharvest responses of Chinese bayberry fruit. Postharvest Biol Technol, 37(3):241-251. 


[28] Zheng, J.T., Zhang, W.S., Bao, L., 2006. AFLP identification and characterization of Yongxuan 56, a new line of Biqi Chinese bayberry. J Fruit Sci, (in Chinese),23(3):397-400. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE