CLC number: S476
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-07-13
Cited: 0
Clicked: 4740
Ya-qian Li, Kai Song, Ya-chai Li, Jie Chen. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation[J]. Journal of Zhejiang University Science B, 2016, 17(8): 619-627.
@article{title="Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation",
author="Ya-qian Li, Kai Song, Ya-chai Li, Jie Chen",
journal="Journal of Zhejiang University Science B",
volume="17",
number="8",
pages="619-627",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500226"
}
%0 Journal Article
%T Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation
%A Ya-qian Li
%A Kai Song
%A Ya-chai Li
%A Jie Chen
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 8
%P 619-627
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500226
TY - JOUR
T1 - Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation
A1 - Ya-qian Li
A1 - Kai Song
A1 - Ya-chai Li
A1 - Jie Chen
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 8
SP - 619
EP - 627
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500226
Abstract: Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×108 spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×108 spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents.
[1]Bae, S., Shoda, M., 2005. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng., 90(1):20-28.
[2]Carreras-Villasenor, N., Sanchez-Arreguin, J.A., Herrera-Estrella, A.H., 2011. Trichoderma: sensing the environment for survival and dispersal. Microbiology, 158(1):3-16.
[3]Fravel, D.R., 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol., 43(1):337-359.
[4]Friedl, M.A., Kubicek, C.P., Druzhinina, I.S., 2008. Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl. Environ. Microbiol., 74(1):245-250.
[5]Gao, L., Sun, M.H., Liu, X.Z., et al., 2007. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol. Res., 111(1):87-92.
[6]Harman, G.E., 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2):190-194.
[7]Harman, G.E., Howell, C.R., Viterbo, A., et al., 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2(1):43-56.
[8]Jagtap, G.P., Bhatnagar, S.S., 2000. Trichoderma chlamydospores-based formulation (Tricoguard™): impact on shelf life. Pestology, 24(9):70-71.
[9]Lai, L.S.T., Pan, C.C., Tzeng, B.K., 2003. The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem., 38(9):1317-1326.
[10]Lewis, J.A., Papavizas, G.C., 1983. Production of chlamydospores and conidia by Trichoderma spp. in liquid and solid growth media. Soil. Biol. Biochem., 15(3):351-357.
[11]Lewis, J.A., Papavizas, G.C., 1984. Chlamydospore formation by Trichoderma spp. in natural substrates. Can. J. Microbiol., 30(1):1-7.
[12]Lin, Z., Ma, J., Yi, S., et al., 2012. Effect of salinity on the biocotrol Trichoderma strain SH2303. J. Shanghai Jiaotong Univ. (Agric. Sci.), 30(5):51-53 (in Chinese).
[13]Mach, R.L., Zeilinger, S., 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol., 60(5):515-522.
[14]Marra, R., Ambrosino, P., Carbone, V., et al., 2006. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr. Genet., 50(5):307-321.
[15]Maurya, D.P., Singh, D., Pratap, D., et al., 2012. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol., 33(1):5-8.
[16]Mishra, D.S., Prajapati, C.R., Gupta, A.K., et al., 2012. Relative bio-efficacy and shelf-life of mycelial fragments, conidia and chlamydospores of Trichoderma harzianum. Vegetos, 25(1):225-232.
[17]Moreno-Mateos, M.A., Delgado-Jarana, J., Codón, A.C., et al., 2007. pH and Pac1 control development and antifungal activity in Trichoderma harzianum. Fungal Genet. Biol., 44(12):1355-1367.
[18]Mukherjee, P.K., Kenerley, C.M., 2010. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl. Environ. Microbiol., 76(7):2345-2352.
[19]Schuster, A., Schmoll, M., 2010. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol., 87(3):787-799.
[20]Singh, A., Srivastava, S., Singh, H.B., 2007. Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresour. Technol., 98(2):470-473.
[21]Sriram, S., Roopa, K.P., Savitha, M.J., 2011. Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium. Crop Prot., 30(10):1334-1339.
[22]Steyaert, J.M., Weld, R.J., Stewart, A., 2010a. Ambient pH intrinsically influences Trichoderma conidiation and colony morphology. Fungal Biol., 114(2-3):198-208.
[23]Steyaert, J.M., Weld, R.J., Stewart, A., 2010b. Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biol., 114(2-3):179-188.
[24]Tisch, D., Schmoll, M., 2010. Light regulation of metabolic pathways in fungi. Appl. Microbiol. Biotechnol., 85(5):1259-1277.
[25]Verma, M., Brar, S.K., Tyagi, R.D., et al., 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem. Eng. J., 37(1):1-20.
[26]Woo, S.L., Scala, F., Ruocco, M., et al., 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology, 96(2):181-185.
[27]Zeilinger, S., Galhaup, C., Payer, K., et al., 1999. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet. Biol., 26(2):131-140.
Open peer comments: Debate/Discuss/Question/Opinion
<1>