Full Text:   <2986>

Summary:  <1957>

CLC number: Q451

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-10-18

Cited: 3

Clicked: 4620

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fang-xiong Shi

http://orcid.org/0000-0001-6271-6184

Nazar Ali Korejo

http://orcid.org/0000-0002-8141-3637

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.11 P.850-863

http://doi.org/10.1631/jzus.B1600136


Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals


Author(s):  Nazar Ali Korejo, Quan-wei Wei, Atta Hussain Shah, Fang-xiong Shi

Affiliation(s):  Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; more

Corresponding email(s):   fxshi@njau.edu.cn

Key Words:  Diabetes, Hyperthyroidism, Testicular and epididymal morphology


Nazar Ali Korejo, Quan-wei Wei, Atta Hussain Shah, Fang-xiong Shi. Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals[J]. Journal of Zhejiang University Science B, 2016, 17(11): 850-863.

@article{title="Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals",
author="Nazar Ali Korejo, Quan-wei Wei, Atta Hussain Shah, Fang-xiong Shi",
journal="Journal of Zhejiang University Science B",
volume="17",
number="11",
pages="850-863",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600136"
}

%0 Journal Article
%T Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals
%A Nazar Ali Korejo
%A Quan-wei Wei
%A Atta Hussain Shah
%A Fang-xiong Shi
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 11
%P 850-863
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600136

TY - JOUR
T1 - Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals
A1 - Nazar Ali Korejo
A1 - Quan-wei Wei
A1 - Atta Hussain Shah
A1 - Fang-xiong Shi
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 11
SP - 850
EP - 863
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600136


Abstract: 
This study evaluated the effects of comorbid disorders of diabetes and hyperthyroidism in the adult male mice. In total, 32 ICR strain mice were equally distributed into four groups: control (C), diabetic (D), diabetic-plus-hyperthyroid (DH), and hyperthyroid (H). Mice allocated for diabetes received a single intraperitoneal injection of streptozotocin (STZ) at 200 mg/kg body weight. At the onset of diabetes, one group of mice was concomitantly injected levothyroxine (LT4; 0.3 mg/kg body weight) and the other set of animals received the same treatment independently on a daily basis. The body weight, as well as the testicular and epididymal weights, was reduced markedly in D and DH mice. Higher trends of blood glucose levels were seen in the DH group, in comparison to euthyroid diabetic mice. Thyroid hormones could exert a transient effect on blood glucose homeostasis by altering the serum blood glucose level in diabetic patients. Histomorphometric analysis showed increased luminal sizes of seminiferous tubules, along with decreased epithelial height and atrophic changes in germinal stem cells in the testis of DH and H mice. Caput epididymis of DH mice showed extensive compaction of principal cells, loss of stereocilia, lipid vacuolization, and inflammatory infiltrations; however, damaged tubular integrity, packed clear cells, exfoliated cells, and round spermatids were profoundly noticed in the cauda epididymis. hyperthyroidism elevated the serum testosterone levels in H and DH mice and produced critical damages to the histoarchitecture of the epididymis. Collectively, this experiment endeavored to mimic the polyglandular autoimmune syndrome, which will be helpful to better understand the reasons for male infertility in diabetic-cum-hyperthyroid patients.

并发糖尿病和甲状腺功能亢进对雄性动物睾丸和附睾组织形态学及类固醇激素合成的作用

目的:评估糖尿病和甲状腺功能亢进对雄性动物睾丸和附睾组织形态学及类固醇激素合成的影响,并初步探讨其作用机制。
创新点:以小鼠为模型,首次研究并发糖尿病和甲状腺功能亢进对雄性哺乳动物睾丸、附睾发育和类固醇激素合成的影响。
方法:32只ICR品系小鼠分为四组:对照组(C)、糖尿病组(D)、糖尿病+甲亢组(DH)和甲亢组(H)。D组小鼠以200 mg/kg剂量单次腹膜内注射链脲佐菌素(STZ),诱导糖尿病成功。另对其中一半以0.3 mg/kg剂量每天注射甲状腺素,组成DH组。小鼠试验结束后,采集睾丸、附睾和血液,并离心分离获得血清。睾丸和附睾用4%(0.04 g/ml)多聚甲醛固定,并用苏木精-伊红染色法(H & E)观察睾丸和附睾组织形态学变化,用放射免疫测定(RIA)试剂盒检测血清中睾酮、促甲状腺激素(TSH)、胰岛素、甲状腺素(T4)和三碘甲状腺原氨酸(T3)的含量并进行分析。
结论:D和DH组小鼠的体重、睾丸和附睾的重量显著降低。相比于正常甲亢或糖尿病小鼠,DH组中血糖水平显著升高。甲状腺激素可能是通过改变糖尿病患者的血清血糖水平对血糖稳态产生瞬时影响。 组织形态学分析结果显示,在DH和H组小鼠睾丸中,输精管管腔增大,上皮厚度减少,睾丸生殖干细胞发生萎缩性变化。DH组小鼠的附睾头呈现主细胞压实、纤毛、脂质空泡化和炎症浸润现象。在附睾尾部观察到了小管完整性受损、透明细胞聚积和细胞脱落,并发现圆形精子。对于DH和H组,甲亢提高了小鼠血清睾酮水平,并损害了附睾的组织形态。总之,本试验模拟了多腺体自身免疫综合征对雄性繁殖的影响,这将有助于更好地了解男性并发糖尿病和甲亢患者不育的原因。

关键词:糖尿病;甲亢;睾丸和附睾形态

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Agbaje, I.M, Rogers, D.A., McVicar, C.M., et al., 2007. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum. Reprod., 22(7):1871-1877.

[2]Akbarzadeh, A., Norouzian, D., Mehrabi, M.R., et al., 2007. Induction of diabetes by streptozotocin in rats. Indian J. Clin. Biochem., 22(2):60-64.

[3]Barker, J.M., Yu, J., Yu, L., et al., 2005. Autoantibody “subspecificity” in type 1 diabetes. Diabetes Care, 28(4):850-855.

[4]Betterle, C., Zanchetta, R., 2003. Update on autoimmune polyendocrine syndromes (APS). Acta Biomed., 74(1):9-33.

[5]Betterle, C., Dal Pra, C., Mantero, F., et al., 2002. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev., 23(3):327-364.

[6]Betterle, C., Lazzarotto, F., Presotto, F., 2004. Autoimmune polyglandular syndrome type 2: the tip of an iceberg? Clin. Exp. Immunol., 137(2):225-233.

[7]Blois, S.L., Dickie, E.L., Kruth, S.A., et al., 2010. Multiple endocrine diseases in cats: 15 cases (1997–2008). J. Feline Med. Surg., 12(8):637-642.

[8]Bucholtz, D.C., Chiesa, A., Pappano, W.N., et al., 2000. Regulation of pulsatile luteinizing hormone secretion by insulin in the diabetic male lamb. Biol. Reprod., 62(5):1248-1255.

[9]Chandra, A.K., Sinha, S., Choudhury, S.R., 2010. Thyroxine induced stress and its possible prevention by catechin. Indian J. Exp. Biol., 48(6):559-565.

[10]Chandrasekhar, Y., D'Occhio, M.J., Holland, M.K., et al., 1985. Activity of the hypothalamo-pituitary axis and testicular development in prepubertal ram lambs with induced hypothyroidism or hyperthyroidism. Endocrinology, 117(4):1645-1651.

[11]Chopra, I.J., 1976. An assessment of daily production and significance of thyroidal secretion of 3,3',5'-triiodothyronine (reverse T3) in man. J. Clin. Invest., 58(1):32-40.

[12]Cortés, D.C.C., Langlois, V.S., Fernandino, J.I., 2014. Crossover of the hypothalamic pituitary-adrenal/interrenal, -thyroid, and -gonadal axes in testicular development. Front. Endocrinol., 5:139.

[13]de Franca, L.R., Hess, R.A., Cooke, P.S., et al., 1995. Neonatal hypothyroidism causes delayed Sertoli cell maturation in rats treated with propylthiouracil: evidence that the Sertoli cell controls testis growth. Anat. Rec., 242(1):57-69.

[14]de Grava Kempinas, W., Klinefelter, G.R., 2014. Interpreting histopathology in the epididymis. Spermatogenesis, 4(2):e979114.

[15]Delahunty, K.M., Beamer, W.G., 2007. Endocrinology: bone as a target tissue for hormonal regulation. In: Fox, J.G., Davisson, M.T., Quimby, F.W., et al. (Eds.), The Mouse in Biomedical Research, 2nd Ed. Volume III: Normative Biology, Husbandry, and Models. Academic Press, Burlington, p.123-132.

[16]Donckier, J., 2003. Endocrine diseases and diabetes. In: Pickup, J.C., Williams, G. (Eds.), Text Book of Diabetes Mellitus. Blackwell Publishing Company, Chichester, UK, Vol. 27, p.21-25.

[17]Duntas, L.H., Orgiazzi, J., Brabant, G., 2011. The interface between thyroid and diabetes mellitus. Clin. Endocrinol., 75(1):1-9.

[18]Fedail, J.S., Zheng, K., Wei, Q., et al., 2014. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine, 46(3):594-604.

[19]Foster, H.L., Small, J.D., Fox, J.G., 1983. The Mouse in Biomedical Research: Normative Biology, Immunology, and Husbandry. Academic Press.

[20]Goglia, F., Moreno, M., Lanni, A., 1999. Action of thyroid hormones at the cellular level: the mitochondrial target. FEBS Lett., 452(3):115-120.

[21]Graham, M.L., Janecek, J.L., Kittredge, J.A., et al., 2011. The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp. Med., 61(4):356-360.

[22]Griffeth, R.J., Carretero, J., Burks, D.J., 2013. Insulin receptor substrate 2 is required for testicular development. PLOS ONE, 8(5):e62103.

[23]Hage, M., Zantout, M.S., Azar, S.T., 2011. Thyroid disorders and diabetes mellitus. J. Thyroid Res., 2011:439463.

[24]Hayashi, K., Kojima, R., Ito, M., 2006. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol. Pharm. Bull., 29(6):1110-1119.

[25]Hoenig, M., 2002. Comparative aspects of diabetes mellitus in dogs and cats. Mol. Cell. Endocrinol., 197(1-9):221-229.

[26]Hoenig, M., 2014. Carbohydrate metabolism and pathogenesis of diabetes mellitus in dogs and cats. In: Kumar, T.R. (Ed.), Progress in Molecular Biology and Translational Science. Glucose Homeostatis and the Pathogenesis of Diabetes Mellitus. Academic Press, Vol. 121, p.377-412.

[27]Iwen, K.A., Schröder, E., Brabant, G., 2013. Thyroid hormones and the metabolic syndrome. Eur. Thyroid J., 2(2):83-92.

[28]Kadiyala, R., Peter, R., Okosieme, O.E., 2010. Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int. J. Clin. Pract., 64(8):1130-1139.

[29]Kianifard, D., Sadrkhanlou, R.A., Hasanzadeh, S., 2012. The ultrastructural changes of the Sertoli and Leydig cells following streptozotocin induced diabetes. Iran. J. Basic Med. Sci., 15(1):623-635.

[30]Kim, S.M., Kim, S.C., Chung, I.K., et al., 2012. Antioxidant and protective effects of Bupleurum falcatum on the L-thyroxine-induced hyperthyroidism in rats. Evid.-Based Compl. Altern. Med., 2012:578497.

[31]Krassas, G.E., Poppe, K., Glinoer, D., 2010. Thyroid function and human reproductive health. Endocr. Rev., 31(5):702-755.

[32]Kühn-Velten, N., Schermer, R., Staib, W., 1984. Effect of streptozotocin-induced hyperglycaemia on androgen-binding protein in rat testis and epididymis. Diabetologia, 26(4):300-303.

[33]Kung, A.W.C., Ng, F., 1994. A rat model of thyroid hormone-induced bone loss: effect of antiresorptive agents on regional bone density and osteocalcin gene expression. Thyroid, 4(1):93-98.

[34]Lagu, S., Bhavsar, N.G., Ramachandran, A., 2011. Neonatal thyroid hormone programming decreases adult testes size, Sertoli cell number and sperm mass but does not alter overall premeiotic germ cell number. Ann. Biol. Res., 2(2):276-289.

[35]Lederer, R., Rand, J.S., Jonsson, N.N., et al., 2009. Frequency of feline diabetes mellitus and breed predisposition in domestic cats in Australia. Vet. J., 179(2):254-258.

[36]Manna, P.R., Kero, J., Tena-Sempere, M., et al., 2001. Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function. Endocrinology, 142(1):319-331.

[37]Maran, R., 2003. Thyroid hormones: their role in testicular steroidogenesis. Arch. Androl., 49(5):375-388.

[38]Maratou, E., Hadjidakis, D.J., Peppa, M., et al., 2010. Studies of insulin resistance in patients with clinical and subclinical hyperthyroidism. Eur. J. Endocrinol., 163(4):625-630.

[39]Mendis-Handagama, S.M., Siril Ariyaratne, H.B., 2005. Leydig cells, thyroid hormones and steroidogenesis. Indian J. Exp. Biol., 43(11):939-962.

[40]Messarah, M., Saoudi, M., Boumendjel, A., et al., 2011. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ. Toxicol. Pharmacol., 31(1):33-41.

[41]Mouradian, M., Abourizk, N., 1983. Diabetes mellitus and thyroid disease. Diabetes Care, 6(5):512-520.

[42]Mulholland, J., Mallidis, C., Agbaje, I., et al., 2011. Male diabetes mellitus and assisted reproduction treatment outcome. Reprod. Biomed., 22(2):215-219.

[43]Navarro-Casado, L., Juncos-Tobarra, M.A., Cháfer-Rudilla, M., et al., 2010. Effect of experimental diabetes and STZ on male fertility capacity. Study in rats. J. Androl., 31(6):584-592.

[44]Oatley, M.J., Racicot, K.E., Oatley, J.M., 2011. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol. Reprod., 84(4):639-645.

[45]O'Meara, N., Blackman, J., Sturis, J., et al., 1993. Alterations in the kinetics of C-peptide and insulin secretion in hyperthyroidism. J. Clin. Endocrinol. Metab., 76(1):79-84.

[46]Pereira, B.M.J., Balasubramanian, K., Govindarajulu, P., 1984. Thyroid epididymal relationship: II. Influence of hyperthyroidism on epididymal lipids. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab., 792(2):207-213.

[47]Radetti, G., Paganini, C., Gentili, L., et al., 1994. Altered adrenal and thyroid function in children with insulin-dependent diabetes mellitus. Acta Diabetol., 31(3):138-140.

[48]Roubsanthisuk, W., Watanakejorn, P., Tunlakit, M., et al., 2006. Hyperthyroidism induces glucose intolerance by lowering both insulin secretion and peripheral insulin sensitivity. J. Med. Assoc. Thai, 89(Suppl. 5):S133-S140.

[49]Russell, L.D., 1990. Histological and Histopathological Evaluation of the Testis. Cache River Press, Clearwater, Florida.

[50]Ruszkowska-Ciastek, B., Sokup, A., Socha, M.W., et al., 2014. A preliminary evaluation of VEGF-A, VEGFR1 and VEGFR2 in patients with well-controlled type 2 diabetes mellitus. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(6):575-581.

[51]Sahoo, D.K., Roy, A., 2012. Compromised rat testicular antioxidant defence system by hypothyroidism before puberty. Int. J. Endocrinol., 2012:637825.

[52]Sahoo, D.K., Roy, A., Bhanja, S., et al., 2008. Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen. Comp. Endocrinol., 156(1):63-70.

[53]Schneider, G., Kopach, K., Ohanian, H., et al., 1979. The hypothalamic-pituitary-gonadal axis during hyperthyroidism in the rat. Endocrinology, 105(3):674-679.

[54]Schoeller, E.L., Albanna, G., Frolova, A.I., et al., 2012. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility. Diabetes, 61(7):1869-1878.

[55]Shaikh, S.B., Haji, I.M., Doddamani, P., et al., 2014. A study of autoimmune polyglandular syndrome (APS) in patients with type1 diabetes mellitus (T1DM) followed up at a teritiary care hospital. J. Clin. Diagn. Res., 8(2):70-72.

[56]Singh, R., Beigh, S.A., 2013. Diseases of thyroid in animals and their management. In: Payan-Carreira, R. (Ed.), Insights from Veterinary Medicine. InTech.

[57]Singh, S., Malini, T., Rengarajan, S., et al., 2009. Impact of experimental diabetes and insulin replacement on epididymal secretory products and sperm maturation in albino rats. J. Cell. Biochem., 108(5):1094-1101.

[58]Soudamani, S., Malini, T., Balasubramanian, K., 2005. Effects of streptozotocin-diabetes and insulin replacement on the epididymis of prepubertal rats: histological and histomorphometric studies. Endocr. Res., 31(2):81-98.

[59]Taniyama, H., Shirakawa, T., Furuoka, H., et al., 1993. Spontaneous diabetes mellitus in young cattle: histologic, immunohistochemical, and electron microscopic studies of the islets of Langerhans. Vet. Pathol., 30(1):46-54.

[60]van Haaster, L.H., de Jong, F.H., Docter, R., et al., 1993. High neonatal triiodothyronine levels reduce the period of Sertoli cell proliferation and accelerate tubular lumen formation in the rat testis, and increase serum inhibin levels. Endocrinology, 133(2):755-760.

[61]Wu, P., 2000. Thyroid disease and diabetes. Clin. Diabetes, 18(1):38-39.

[62]Zamoner, A., Barreto, K.P., Wilhelm Filho, D., et al., 2007. Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation. Mol. Cell. Endocrinol., 267(1-2):116-126.

[63]Zhao, H., Wang, Z.S., Zou, D.H., et al., 2003. Cytological changes in testes of male rats with short-term diabetes mellitus. Reprod. Contrac., 1:002 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE