CLC number: TP242
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-02-08
Cited: 2
Clicked: 7697
Shuang-quan Wen, Tie-jun Wu. Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm[J]. Journal of Zhejiang University Science C, 2012, 13(3): 218-231.
@article{title="Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm",
author="Shuang-quan Wen, Tie-jun Wu",
journal="Journal of Zhejiang University Science C",
volume="13",
number="3",
pages="218-231",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100151"
}
%0 Journal Article
%T Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm
%A Shuang-quan Wen
%A Tie-jun Wu
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 3
%P 218-231
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100151
TY - JOUR
T1 - Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm
A1 - Shuang-quan Wen
A1 - Tie-jun Wu
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 3
SP - 218
EP - 231
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100151
Abstract: Grasp evaluation and planning are two fundamental issues in robotic grasping and dexterous manipulation. Most traditional methods for grasp quality evaluation suffer from non-uniformity of the wrench space and a dependence on the scale and choice of the reference frame. To overcome these weaknesses, we present a grasp evaluation method based on disturbance force rejection under the assumption that the normal component of each individual contact force is less than one. The evaluation criterion is solved using an enhanced ray-shooting algorithm in which the geometry of the grasp wrench space is read by the support mapping. This evaluation procedure is very fast due to the efficiency of the ray-shooting algorithm without linearization of the friction cones. Based on a necessary condition for grasp quality improvement, a heuristic searching algorithm for polyhedral object regrasp is also proposed. It starts from an initial force-closure unit grasp configuration and iteratively improves the grasp quality to find the locally optimum contact points. The efficiency and effectiveness of the proposed algorithms are illustrated by a number of numerical examples.
[1]Bicchi, A., 2000. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom., 16(6):652-662.
[2]Borst, C., Fischer, M., Hirzinger, G., 2004. Grasp Planning: How to Choose a Suitable Task Wrench Space. IEEE Int. Conf. on Robotics and Automation, p.319-325.
[3]Chinellato, E., Fisher, R.B., Morales, A., del Pobil, A.P., 2003. Ranking Planar Grasp Configurations for a Three-Finger Hand. IEEE Int. Conf. on Robotics and Automation, p.1133-1138.
[4]Ding, D., Liu, Y.H., Wang, M.Y., Wang, S.G., 2001a. Automatic selection of fixturing surfaces and fixturing points for polyhedral workpieces. IEEE Trans. Robot. Autom., 17(6):833-841.
[5]Ding, D., Liu, Y.H., Zhang, J., Knoll, A., 2001b. Computation of Fingertip Positions for a Form-Closure Grasp. IEEE Int. Conf. on Robotics and Automation, p.2217-2222.
[6]Ferrari, C., Canny, J., 1992. Planning Optimal Grasps. IEEE Int. Conf. on Robotics and Automation, p.2290-2295.
[7]Gilbert, E.G., Foo, C.P., 1990. Computing the distance between general convex objects in three-dimensional space. IEEE Trans. Robot. Autom., 6(1):53-61.
[8]Li, J.W., Liu, H., Cai, H.G., 2003. On computing three-finger force-closure grasps of 2-D and 3-D objects. IEEE Trans. Robot. Autom., 19(1):155-161.
[9]Liu, Y.F., Lam, M.L., Ding, D., 2004. A complete and efficient algorithm for searching 3-D form-closure grasps in the discrete domain. IEEE Trans. Robot., 20(5):805-816.
[10]Liu, Y.H., 1999. Qualitative test and force optimization of 3-D frictional form-closure grasps using linear programming. IEEE Trans. Robot. Autom., 15(1):163-173.
[11]Liu, Y.H., 2000. Computing n-finger form-closure grasps on polygonal objects. Int. J. Robot. Res., 19(2):149-158.
[12]Mangialardi, L., Mantriota, G., Trentadue, A., 1996. A three-dimensional criterion for the determination of optimal grip points. Robot. Comput.-Integr. Manuf., 12(2):157-167.
[13]Mantriota, G., 1999. Communication on optimal grip points for contact stability. Int. J. Robot. Res., 18(5):502-513.
[14]Mirtich, B., Canny, J., 1994. Easily Computable Optimum Grasps in 2-D and 3-D. Proc. IEEE Int. Conf. on Robotics and Automation, p.739-747.
[15]Murray, R.M., Li, Z., Sastry, S.S., 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, FL, USA.
[16]Phoka, T., Niparnan, N., Sudsang, A., 2006. Planning Optimal Force-Closure Grasps for Curved Objects by Genetic Algorithm. IEEE Conf. on Robotics Automation and Mechatronics, p.1-6.
[17]Roa, M.A., Suárez, R., 2009. Finding locally optimum force-closure grasps. Robot. Comput.-Integr. Manuf., 25(3):536-544.
[18]Salisbury, K., Roth, B., 1983. Kinematics and force analysis of articulated mechanical hands. J. Mech. Transm. Autom. Des., 105(1):35-41.
[19]Strandberg, M., Wahlberg, B., 2006. A method for grasp evaluation based on disturbance force rejection. IEEE Trans. Robot., 22(3):461-469.
[20]Suárez, R., Roa, M., Cornella, J., 2006. Grasp Quality Measures. Technical Report IOC-DT-P-2006-10, Institut d’Organització i Control de Sistemes Industrials, Universitat Politecnica de Catalunya, Barcelona, Spain.
[21]Teichmann, M., 1996. A Grasp Metric Invariant under Rigid Motions. Proc. IEEE Int. Conf. on Robotics and Automation, p.2143-2148.
[22]Watanabe, T., Yoshikawa, T., 2007. Grasping optimization using a required external force set. IEEE Trans. Autom. Sci. Eng., 4(1):52-66.
[23]Xiong, Y.L., 1994. Theory of point contact restraint and qualitative analysis of robot grasping. Sci. China Ser. A, 37(5):629-640.
[24]Zheng, Y., Chew, C.M., 2009. A Numerical Solution to the Ray-Shooting Problem and Its Applications in Robotic Grasping. IEEE Int. Conf. on Robotics and Automation, p.2080-2085.
[25]Zheng, Y., Qian, W.H., 2006. Limiting and minimizing the contact forces in multifingered grasping. Mech. Mach. Theory, 41(10):1243-1257.
[26]Zheng, Y., Qian, W.H., 2009. Improving grasp quality evaluation. Robot. Auton. Syst., 57(6-7):665-673.
[27]Zheng, Y., Lin, M.C., Manocha, D., 2010. A Fast n-Dimensional Ray-Shooting Algorithm for Grasping Force Optimization. IEEE Int. Conf. on Robotics and Automation, p.1300-1305.
[28]Zhu, X.Y., Wang, J., 2003. Synthesis of force-closure grasps on 3-D objects based on the Q distance. IEEE Trans. Robot. Autom., 19(4):669-679.
[29]Zhu, X.Y., Ding, H., Li, H.X., 2001. A Quantitative Measure for Multi-fingered Grasps. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.213-219.
[30]Zhu, X.Y., Ding, H., Wang, M.Y., 2004. A numerical test for the closure properties of 3-D grasps. IEEE Trans. Robot. Autom., 20(3):543-549.
Open peer comments: Debate/Discuss/Question/Opinion
<1>