CLC number: TN82
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-04-13
Cited: 0
Clicked: 8642
Iraj Arghand Lafmajani, Pejman Rezaei. A novel frequency-selective metamaterial to improve helix antenna[J]. Journal of Zhejiang University Science C, 2012, 13(5): 365-375.
@article{title="A novel frequency-selective metamaterial to improve helix antenna",
author="Iraj Arghand Lafmajani, Pejman Rezaei",
journal="Journal of Zhejiang University Science C",
volume="13",
number="5",
pages="365-375",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100239"
}
%0 Journal Article
%T A novel frequency-selective metamaterial to improve helix antenna
%A Iraj Arghand Lafmajani
%A Pejman Rezaei
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 5
%P 365-375
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100239
TY - JOUR
T1 - A novel frequency-selective metamaterial to improve helix antenna
A1 - Iraj Arghand Lafmajani
A1 - Pejman Rezaei
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 5
SP - 365
EP - 375
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100239
Abstract: A novel frequency-selective metamaterial with negative permittivity and permeability for improving directivity and gain of a helix antenna is presented in this paper. The proposed metamaterial is composed of two Z-shape resonators printed on opposite sides of a dielectric substrate. Two forms of multilayered cells are found to be suitable for antennas and waveguides applications. In addition, a new method of designing a metamaterial-based helix antenna is presented with high directivity and gain. A comparison on radiation properties is given between the conventional and the new metamaterial-based helix antennas. Two comparisons on radiation properties are performed: (1) the effect of proposed Z-structure on monopole, dipole, and helix antennas; (2) the effect of OE3, split-ring resonator (SRR), and proposed Z-structure unit cells on the performance of helix antennas. The results show improvement of parameters such as directivity, gain, and radiation power of the new metamaterial-based helix antenna. Therefore, the combination of Z-structure with the helix antenna shows the best performance.
[1]Arghand Lafmajani, I., Rezaei, P., 2011a. Improvement the Radiation Properties of Small Antenna with Metamaterial Cell Arrays. 19th Iranian Conference on Electrical Engineering, p.1-4.
[2]Arghand Lafmajani, I., Rezaei, P., 2011b. Miniaturized rectangular patch antenna loaded with spiral/wires metamaterial. Eur. J. Sci. Res., 65(1):121-130.
[3]Aydin, K., Ozbay, E., 2006. Identifying magnetic response of split-ring resonators at microwave frequencies. Opto-Electron. Rev., 14(3):193-199.
[4]Bilotti, F., Alu, A., Vegni, L., 2008. Design of miniaturize metamaterial patch antennas with µ-negative loading. IEEE Trans. Antennas Propagat., 56(6):1640-1647.
[5]Caloz, C., Sanada, A., Itoh, T., 2004. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microwave Theory Techn., 52(3):980-992.
[6]Chan, C.T., Li, J., Fung, K.H., 2006. On extending the concept of double negativity to acoustic waves. J. Zhejiang Univ.-Sci. A, 7(1):24-28.
[7]Chen, H., O(Hara, J.F., Taylor, A.J., Averitt, R.D., Highstrete, C., Lee, M., Padilla, W.J., 2007. Complementary planar terahertz metamaterials. Opt. Expr., 15(3):1084-1095.
[8]Erentok, A., Ziolkowski, R.W., 2008. Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antenna Propagat., 56(3):691-707.
[9]Ghadarghadr, S., Mosallaei, H., 2009. Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres. IEEE Trans. Antennas Propagat., 57(1):149-160.
[10]Hu, J., Yan, C., Lin, Q., 2006. A new patch antenna with metamaterial cover. J. Zhejiang Univ.-Sci. A, 7(1):89-94.
[11]Kantartzis, N.V., Sounas, D.L., Antonopoulos, C.S., 2007. A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates. IEEE Trans. Magn., 43(4):1329-1332.
[12]Karawas, G.K., Collin, R.E., 2008. Spherical Shell of ENG Metamaterial Surrounding a Dipole Antenna. Military Communications Conf., p.1-7.
[13]Nicolson, A.M., Ross, G.F., 1970. Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans. Instrum. Meas., 19(4):377-382.
[14]Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Techn., 47(11):2075-2084.
[15]Plum, E., Zhou, J., Dong, J., Fedotov, V.A., Koschny, T., Soukoulis, C.M., Zheludev, N.I., 2009. Metamaterial with negative index due to chirality. Phys. Rev. B, 79(035407):1-6.
[16]Simovski, C.R., 2007. Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch latices. Metamaterials, 1(2):62-80.
[17]Sounas, D.L., Kantartzis, N.V., 2009. Systematic surface waves analysis at the interfaces of composite DNG/SNG media. Opt. Expr., 17(10):8513-8524.
[18]Vendik, I., Odit, M., Kozlov, D., 2009. 3D metamaterial based on a regular array of resonant dielectric inclusions. Radioengineering, 18(2):111-116.
[19]Veselago, V.G., 1968. The electrodynamics of substances with simultaneously negative values of ε and (. Sov. Phys. Usp., 10(4):509-514.
[20]Wang, J., Qu, S., Xu, Z., Ma, H., Yang, Y., Chao, G., 2008. A controllable magnetic metamaterial: split-ring resonator with rotated inner ring. IEEE Trans. Antennas Propagat., 56(7):2018-2022.
[21]Zhu, F., Hu, J., 2007. Improved patch antenna performance by using a metamaterial cover. J. Zhejiang Univ.-Sci. A, 8(2):192-196.
[22]Ziolkowski, R.W., 2003. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propagat., 51(7):1516-1529.
[23]Ziolkowski, R.W., Erentok, A., 2006. Metamaterial-based efficient electrically small antennas. IEEE Trans. Antennas Propagat., 54(7):2113-2130.
[24]Ziolkowski, R.W., Heyman, E., 2001. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E, 64(056625):1-15.
Open peer comments: Debate/Discuss/Question/Opinion
<1>