CLC number: TM131.3; TM722
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-07-06
Cited: 13
Clicked: 9595
Yan-hu Chen, Can-jun Yang, De-jun Li, Bo Jin, Ying Chen. Development of a direct current power system for a multi-node cabled ocean observatory system[J]. Journal of Zhejiang University Science C, 2012, 13(8): 613-623.
@article{title="Development of a direct current power system for a multi-node cabled ocean observatory system",
author="Yan-hu Chen, Can-jun Yang, De-jun Li, Bo Jin, Ying Chen",
journal="Journal of Zhejiang University Science C",
volume="13",
number="8",
pages="613-623",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100381"
}
%0 Journal Article
%T Development of a direct current power system for a multi-node cabled ocean observatory system
%A Yan-hu Chen
%A Can-jun Yang
%A De-jun Li
%A Bo Jin
%A Ying Chen
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 8
%P 613-623
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100381
TY - JOUR
T1 - Development of a direct current power system for a multi-node cabled ocean observatory system
A1 - Yan-hu Chen
A1 - Can-jun Yang
A1 - De-jun Li
A1 - Bo Jin
A1 - Ying Chen
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 8
SP - 613
EP - 623
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100381
Abstract: Due to the shortage of suitable research methods for real-time and long-term observation of oceans, an innovative approach that can provide abundant power and wide bandwidth is being developed worldwide for undersea instruments. In this paper, we develop a direct current (DC) power system which is applied to a multi-node cabled ocean observatory system named ZERO (Zhejiang University Experimental and Research Observatory). The system addresses significant issues ranging from terrestrial facility to subsea infrastructure, and focuses on using appropriate methods to deal with several key challenges, including delivery, conversion, distribution, and management of power, and heat dissipation in pressure vessels. A basic laboratory platform consisting of a shore station, a primary node in a water tank, and a secondary node in a deep-sea simulation chamber under 42 MPa pressure was built and fully tested. An improved secondary node was deployed in Monterey Bay in California for a deep-sea trial. An 11-day laboratory test and a half-year sea trial proved that the DC power system based on our proposed methods is viable for the underwater multi-node observatory system.
[1]Aguzzi, J., Mànuel, A., Condal, F., Guillén, J., Nogueras, M., del Rio, J., Costa, C., Menesatti, P., Puig, P., Sardà, F., Toma, D., Palanques, A., 2011a. The new seafloor observatory (OBSEA) for remote and long-term coastal ecosystem monitoring. Sensors, 11(6):5850-5872.
[2]Aguzzi, J., Costa, C., Robert, K., Matabos, M., Antonucci, F., Juniper, S.K., Menesatti, P., 2011b. Automated image analysis for the detection of benthic crustaceans and bacterial mat coverage using the VENUS undersea cabled network. Sensors, 11(11):10534-10556.
[3]Austin, T.C., Edson, J.B., McGillis, W.R., Purcell, M., Petitt, R.A., McElroy, M.K., Grant, C.W., Ware, J., Hurst, S.K., 2002. A network-based telemetry architecture developed for the Martha’s vineyard coastal observatory. IEEE J. Ocean. Eng., 27(2):228-234.
[4]Ayyanar, R., Giri, R., Mohan, N., 2004. Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme. IEEE Trans. Power Electron., 19(6):1462-1473.
[5]Barnes, C.R., Tunnicliffe, V., 2008. Building the World’s First Multi-node Cabled Ocean Observatories (NEPTUNE Canada and VENUS, Canada): Science, Realities, Challenges and Opportunities. OCEANS, p.1213-1220.
[6]Barnes, C.R., Best, M.M.R., Bornhold, B.D., Juniper, S.K., Pirenne, B., Phibbs, P., 2007. The NEPTUNE Project—a Cabled Ocean Observatory in the NE Pacific: Overview, Challenges and Scientific Objectives for the Installation and Operation of Stage I in Canadian Waters. 5th Int. Symp. on Underwater Technology, p.308-313.
[7]Bhinge, A., Mohan, N., Giri, R., Ayyanar, R., 2002. Series-Parallel Connection of DC-DC Converter Modules with Active Sharing of Input Voltage and Load Current. 17th Annual IEEE Applied Power Electronics Conf. and Exposition, p.648-653.
[8]Chave, A.D., Waterworth, G., Maffei, A.R., Massion, G., 2004. Cabled ocean observatory systems. Mar. Technol. Soc. J., 38(2):30-43.
[9]Chen, W., Zhuang, K., Ruan, X.B., 2009. A input-series- and output-parallel-connected inverter system for high-input-voltage applications. IEEE Trans. Power Electron., 24(9):2127-2137.
[10]Clark, A.M., Sekino, H., 2001. A Multidisciplinary Deep Sea Long-Term Observatory in Japan. OCEANS, p.1290-1295.
[11]Dewey, R., Tunnicliffe, V., 2003. VENUS: Future Science on a Coastal Mid-depth Observatory. 3rd Int. Workshop on Scientific Use of Submarine Cables and Related Technologies, p.232-233.
[12]Fairly, P., 2005. Neptune rising. IEEE Spectr., 42(11):38-45.
[13]Favali, P., Beranzoli, L., 2006. Seafloor observatory science: a review. Ann. Geophys., 49(2/3):515-567.
[14]Giri, R., Ayyanar, R., Ledezma, E., 2004. Input-Series and Output-Series Connected Modular DC-DC Converters with Active Input Voltage and Output Voltage Sharing. 19th Annual IEEE Applied Power Electronics Conf. and Exposition, p.1751-1756.
[15]Giri, R., Choudhary, V., Ayyanar, R., Mohan, N., 2006. Common-duty-ratio control of input-series connected modular DC-DC converters with active input voltage and load-current sharing. IEEE Trans. Ind. Appl., 42(4):1101-1111.
[16]Howe, B.M., Kirkham, H., Vorpérian, V., 2002. Power system considerations for undersea observatories. IEEE J. Ocean. Eng., 27(2):267-275.
[17]Howe, B.M., Chan, T., El-Sharkawi, M., Kenney, M., Kolve, S., Liu, C.C., Lu, S., McGinnis, T., Schneider, K., Siani, C., et al., 2006. Power System for the MARS Ocean Cabled Observatory. Scientific Submarine Cable Conf., p.121-126.
[18]Huang, Y.H., Tse, C.K., Ruan, X.B., 2009. General control considerations for input-series connected DC/DC converters. IEEE Trans. Circ. Syst. I, 56(6):1286-1296.
[19]Jenkyns, R., 2010. NEPTUNE Canada: Data Integrity from the Seafloor to Your (Virtual) Door. OCEANS, p.1-7.
[20]Kirkham, H., Howe, B.M., Vorperian, V., Bowerman, P., 2001. The Design of the NEPTUNE Power System. OCEANS, p.1374-1380.
[21]Kojima, J., Howe, B.M., Asakawa, K., Kirkham, H., 2004. Power Systems for Ocean Regional Cabled Observatories. OCEANS, p.2176-2181.
[22]Li, Z.S., Li, D.J., Lin, L., Chen, Y., 2010. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(10):824-834.
[23]Matabos, M., Aguzzi, J., Robert, K., Costa, C., Menesatti, P., Company, J.B., Juniper, S.K., 2011. Multi-parametric study of behavioural modulation in demersal decapods at the VENUS cabled observatory in Saanich Inlet, British Columbia, Canada. J. Exp. Mar. Biol. Ecol., 401(1-2):89-96.
[24]Petitt, R.A., Harris, D.W., Wooding, F.B., Bailey, J., Jolly, J., Hobart, E., Chave, A.D., Duennebier, F.K., Butler, R., Bowen, A., et al., 2002. The Hawaii-2 Observatory. IEEE J. Ocean. Eng., 27(2):245-253.
[25]Ruan, X.B., Chen, W., Cheng, L.L., Tse, C.K., Yan, H., Zhang, T., 2009. Control strategy for input-series-output-parallel converters. IEEE Trans. Ind. Electron., 56(4):1174-1185.
[26]Sosik, H.M., Olson, R.J., Michael, G., Neubert, M.G., Shalapyonok, A., Andrew, R., Solow, A.R., 2003. Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer. Limnol. Oceanogr., 48(5):1756-1765.
[27]Vorperian, V., 2007. Synthesis of medium voltage dc-to-dc converters from low-voltage, high-frequency PWM switching converters. IEEE Trans. Power Electron., 22(5):1619-1635.
Open peer comments: Debate/Discuss/Question/Opinion
<1>