Full Text:   <2767>

Summary:  <2077>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-19

Cited: 0

Clicked: 7033

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.9 P.729-743

http://doi.org/10.1631/jzus.C1400099


A controllable stitch layout strategy for random needle embroidery


Author(s):  Jie Zhou, Zheng-xing Sun, Ke-wei Yang

Affiliation(s):  State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China

Corresponding email(s):   makey537@163.com, szx@nju.edu.cn

Key Words:  Random needle embroidery (RNE), Stitch style, Stitch layout, Stitch neighborhood graph, Reaction diffusion


Jie Zhou, Zheng-xing Sun, Ke-wei Yang. A controllable stitch layout strategy for random needle embroidery[J]. Journal of Zhejiang University Science C, 2014, 15(9): 729-743.

@article{title="A controllable stitch layout strategy for random needle embroidery",
author="Jie Zhou, Zheng-xing Sun, Ke-wei Yang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="9",
pages="729-743",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400099"
}

%0 Journal Article
%T A controllable stitch layout strategy for random needle embroidery
%A Jie Zhou
%A Zheng-xing Sun
%A Ke-wei Yang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 9
%P 729-743
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400099

TY - JOUR
T1 - A controllable stitch layout strategy for random needle embroidery
A1 - Jie Zhou
A1 - Zheng-xing Sun
A1 - Ke-wei Yang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 9
SP - 729
EP - 743
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400099


Abstract: 
random needle embroidery (RNE) is a graceful art enrolled in the world intangible cultural heritage. In this paper, we study the stitch layout problem and propose a controllable stitch layout strategy for RNE. Using our method, a user can easily change the layout styles by adjusting several high-level layout parameters. This approach has three main features: firstly, a stitch layout rule containing low-level stitch attributes and high-level layout parameters is designed; secondly, a stitch neighborhood graph is built for each region to model the spatial relationship among stitches; thirdly, different stitch attributes (orientations, lengths, and colors) are controlled using different reaction-diffusion processes based on a stitch neighborhood graph. Moreover, our method supports the user in changing the stitch orientation layout by drawing guide curves interactively. The experimental results show its capability for reflecting various stitch layout styles and flexibility for user interaction.

一种可控的乱针绣针法排布策略

研究目的:乱针绣(random needle embroidery)是列入世界非物质文化遗产的艺术,它融西方绘画技巧与中国刺绣技艺于一体,针法灵活多变,风格独特。采用计算机技术模拟乱针绣风格,对其传承和发展具有重要意义。如何设计有效、可控的针法排布机制是表现乱针绣针法特色以及乱针绣风格模拟的基础。
创新要点:提出一种参数驱动的针法排布策略,通过高层排布参数及反应扩散过程有效实现对绣线方向、长短、颜色的控制。用户通过调整高层参数或绘制简单的草图笔画即可方便地调整针法排布风格。
方法提亮:设计了包含绣线低层属性及高层排布参数的针法排布模型;建立邻域图表示相邻绣线之间的拓扑关系;提出基于邻域拓扑关系及反应扩散过程的针法排布控制策略;给出基于纹理映射及亮度衰减的绣线仿真算法。
重要结论:根据本文提出的针法排布策略,用户只需调整若干高层参数或绘制简单的笔画即可改变针法排布风格。实验结果表现了两方面特性:针法风格表现的多样性及用户交互的便利性。
乱针绣;针法风格;针法排布;针迹邻域图;反应扩散

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adabala, N., Magnenat-Thalmann, N., Fei, G., 2003. Real-time rendering of woven clothes. Proc. ACM Symp. on Virtual Reality Software and Technology, p.41-47.

[2]Bratkova, M., Shirley, P., Thompson, W.B., 2009. Artistic rendering of mountainous terrain. ACM Trans. Graph., 28(4):1-17.

[3]Chen, H., Zhu, S.C., 2006. A generative sketch model for human hair analysis and synthesis. IEEE Trans. Patt. Anal. Mach. Intell., 28(7):1025-1040.

[4]Chen, S.G., Sun, Z.X., Xiang, J.H., et al., 2011. Research on the technology of computer aided irregular needling embroidery. Chin. J. Comput., 34(3):526-538 (in Chinese).

[5]Chen, X.L., McCool, M., Kitamoto, A., et al., 2012. Embroidery modeling and rendering. Proc. Graphics Interface Conf., p.131-139.

[6]Collomosse, J.P., Hall, P.M., 2002. Painterly rendering using image salience. Proc. 20th Eurographics UK Conf., p.122-128.

[7]Curtis, C.J., Anderson, S.E., Seims, J.E., et al., 1997. Computer-generated watercolor. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.421-430.

[8]Deussen, O., Hiller, S., van Overveld, C., et al., 2000. Floating points: a method for computing stipple drawings. Comput. Graph. Forum, 19(3):41-50.

[9]Ding, Z.A., Zhang, X., Chen, W., et al., 2012. Coherent streamline generation for 2-D vector fields. Tsinghua Sci. Technol., 17(4):463-470.

[10]Dogrusoz, U., Belviranli, M.E., Dilek, A., 2013. CiSE: a circular spring embedder layout algorithm. IEEE Trans. Visual. Comput. Graph., 19(6):953-966.

[11]Gamito, M.N., Maddock, S.C., 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. Graph., 29(1):8:1-8:19.

[12]Gansner, E.R., Hu, Y.F., North, S., 2013. A maxent-stress model for graph layout. IEEE Trans. Visual. Comput. Graph., 19(6):927-940.

[13]Guo, C.E., Zhu, S.C., Wu, Y.N., 2007. Primal sketch: integrating structure and texture. Comput. Vis. Image Underst., 106(1):5-19.

[14]Hausner, A., 2001. Simulating decorative mosaics. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.573-580.

[15]Hays, J., Essa, I., 2004. Image and video based painterly animation. Proc. 3rd Int. Symp. on Non-photorealistic Animation and Rendering, p.113-120.

[16]Hertzmann, A., 2003. A survey of stroke-based rendering. IEEE Comput. Graph. Appl., 23(4):70-81.

[17]Huang, H., Fu, T.N., Li, C.F., 2011. Painterly rendering with content-dependent natural paint strokes. Vis. Comput., 27(9):861-871.

[18]Inglis, T.C., Inglis, S., Kaplan, C.S., 2012. Op art rendering with lines and curves. Comput. Graph., 36(6):607-621.

[19]Kaldor, J.M., James, D.L., Marschner, S., 2008. Simulating kintted cloth at the yarn level. ACM Trans. Graph., 27(3):65:1-65:9.

[20]Kalnins, R.D., Markosian, L., Meier, B.J., et al., 2002. WYSIWYG NPR: drawing strokes directly on 3D models. ACM Trans. Graph., 21(3):755-762.

[21]Kang, H., Lee, S.Y., Chui, C.K., 2007. Coherent line drawing. Proc. 5th Int. Symp. on Non-photorealistic Animation and Rendering, p.43-50.

[22]Kondo, S., Miura, T., 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329(5999):1616-1620.

[23]Kopf, J., Cohen-Or, D., Deussen, O., et al., 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph., 25(3):509-518.

[24]Litwinowicz, P., 1997. Processing images and video for an impressionist effect. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.407-414.

[25]Lu, J., Sander, P.V., Finkelstein, A., 2010. Interactive painterly stylization of images, videos and 3D animations. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.127-134.

[26]Luft, T., Deussen, O., 2006. Real-time watercolor illustrations of plants using a blurred depth test. Proc. 4th Int. Symp. on Non-photorealistic Animation and Rendering, p.11-20.

[27]Mao, X.Y., Nagasaka, Y., Imamiya, A., 2002. Automatic generation of pencil drawing from 2D images using line integral convolution. SIGGRAPH, p.149.

[28]Martín, D., Arroyo, G., Luzón, M., et al., 2010. Example-based stippling using a scale-dependent grayscale process. Proc. 8th Int. Symp. on Non-photorealistic Animation and Rendering, p.51-61.

[29]O’Donovan, P., Hertzmann, A., 2012. AniPaint: interactive painterly animation from video. IEEE Trans. Visual. Comput. Graph., 18(3):475-487.

[30]Park, Y., Yoon, K., 2008. Painterly animation using motion maps. Graph. Models, 70(1):1-15.

[31]Peng, C.H., Yang, Y.L., Wonka, P., 2014. Computing layouts with deformable templates. ACM Trans. Graph., 33(4), Article 99.

[32]Perona, P., 1998. Orientation diffusions. IEEE Trans. Image Process., 7(3):457-467.

[33]Salisbury, M.P., Anderson, S.E., Barzel, R., et al., 1994. Interactive pen-and-ink illustration. Proc. 21st Annual Conf. on Computer Graphics and Interactive Techniques, p.101-108.

[34]Sanderson, A.R., Kirby, R.M., Johnson, C.R., et al., 2006. Advanced reaction-diffusion models for texture synthesis. Graph. GPU Game Tools, 11(3):47-71.

[35]Santella, A., DeCarlo, D., 2002. Abstracted painterly renderings using eye-tracking data. Proc. 2nd Int. Symp. on Non-photorealistic Animation and Rendering.

[36]Secord, A., 2002. Weighted Voronoi stippling. Proc. 2nd Int. Symp. on Non-photorealistic Animation and Rendering, p.37-43.

[37]Shiraishi, M., Yamaguchi, Y., 2000. An algorithm for automatic painterly rendering based on local source image approximation. Proc. 1st Int. Symp. on Non-photorealistic Animation and Rendering, p.53-58.

[38]Shotton, J., Winn, J., Rother, C., et al., 2006. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. Proc. 9th European Conf. on Computer Vision, p.1-15.

[39]Turk, G., 1991. Generating textures on arbitrary surfaces using reaction-diffusion. Proc. 18th Annual Conf. on Computer Graphics and Interactive Techniques, p.289-298.

[40]Vanderhaeghe, D., Barla, P., Thollot, J., et al., 2007. Dynamic point distribution for stroke-based rendering. Proc. 18th Eurographics Conf. on Rendering Techniques, p.139-146.

[41]Wyvill, B., Overveld, K., Carpendale, S., 2004. Rendering cracks in batik. Proc. 3rd Int. Symp. on Non-photorealistic Animation and Rendering, p.61-149.

[42]Xie, N., Laga, H., Saito, S., et al., 2010. IR2s: interactive real photo to Sumi-e. Proc. 8th Int. Symp. on Nonphotorealistic Animation and Rendering, p.63-71.

[43]Xu, J., Kaplan, C.S., 2007. Image-guided maze construction. ACM Trans. Graph., 26(3):29-38.

[44]Xu, K., Wang, J.P., Tong, X., et al., 2009a. Edit propagation on bidirectional texture functions. Comput. Graph. Forum, 28(7):1871-1877.

[45]Xu, K., Li, Y., Ju, T., et al., 2009b. Efficient affinity-based edit propagation using K-D tree. ACM Trans. Graph., 28(5), Article 118.

[46]Xu, K., Chen, K., Fu, H.B., et al., 2013. Sketch2scene: sketch-based co-retrieval and co-placement of 3D models. ACM Trans. Graph., 32(4):123:1-123:12.

[47]Xu, X., Zhang, L., Wong, T.T., 2010. Structure-based ASCII art. ACM Trans. Graph., 29(4), Article 52.

[48]Yamamoto, S., Mao, X., Imamiya, A., 2004. Colored pencil filter with custom colors. Proc. 12th Pacific Conf. on Computer Graphics and Applications, p.329-338.

[49]Yang, Y.L., Wang, J., Vouga, E., et al., 2013. Urban pattern: layout design by hierarchical domain splitting. ACM Trans. Graph, 32(6):181:1-181:12.

[50]Yuan, X.R., Che, L.M., Hu, Y.F., et al., 2012. Intelligent graph layout using many users’ input. IEEE Trans. Visual. Comput. Graph., 18(12):2699-2708.

[51]Zeng, K., Zhao, M.T., Xiong, C.M., et al., 2009. From image parsing to painterly rendering. ACM Trans. Graph., 29(1):2:1-2:11.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE