Full Text:   <2679>

Summary:  <2131>

CLC number: TP212.3; Q189

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-09-17

Cited: 1

Clicked: 7846

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.10 P.813-820

http://doi.org/10.1631/jzus.C1400154


Exploring the mechanism of neural-function reconstruction by reinnervated nerves in targeted muscles


Author(s):  Hui Zhou, Lin Yang, Feng-xia Wu, Jian-ping Huang, Liang-qing Zhang, Ying-jian Yang, Guang-lin Li

Affiliation(s):  Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; more

Corresponding email(s):   gl.li@siat.ac.cn

Key Words:  Neural function reconstruction, Targeted muscle reinnervation, Intramuscular myoelectric signal, Myoelectric prostheses


Hui Zhou, Lin Yang, Feng-xia Wu, Jian-ping Huang, Liang-qing Zhang, Ying-jian Yang, Guang-lin Li. Exploring the mechanism of neural-function reconstruction by reinnervated nerves in targeted muscles[J]. Journal of Zhejiang University Science C, 2014, 15(10): 813-820.

@article{title="Exploring the mechanism of neural-function reconstruction by reinnervated nerves in targeted muscles",
author="Hui Zhou, Lin Yang, Feng-xia Wu, Jian-ping Huang, Liang-qing Zhang, Ying-jian Yang, Guang-lin Li",
journal="Journal of Zhejiang University Science C",
volume="15",
number="10",
pages="813-820",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400154"
}

%0 Journal Article
%T Exploring the mechanism of neural-function reconstruction by reinnervated nerves in targeted muscles
%A Hui Zhou
%A Lin Yang
%A Feng-xia Wu
%A Jian-ping Huang
%A Liang-qing Zhang
%A Ying-jian Yang
%A Guang-lin Li
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 10
%P 813-820
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400154

TY - JOUR
T1 - Exploring the mechanism of neural-function reconstruction by reinnervated nerves in targeted muscles
A1 - Hui Zhou
A1 - Lin Yang
A1 - Feng-xia Wu
A1 - Jian-ping Huang
A1 - Liang-qing Zhang
A1 - Ying-jian Yang
A1 - Guang-lin Li
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 10
SP - 813
EP - 820
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400154


Abstract: 
A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly proposed neural-function construction method, targeted muscle reinnervation (TMR), appears promising. Recent advances in the TMR technique suggest that TMR could provide additional motor command information for the control of multifunctional myoelectric prostheses. However, little is known about the nature of the physiological functional recovery of the reinnervated muscles. More understanding of the underlying mechanism of TMR could help us fine tune the technique to maximize its capability to achieve a much higher performance in the control of multifunctional prostheses. In this study, rats were used as an animal model for TMR surgery involving transferring a median nerve into the pectoralis major, which served as the target muscle. intramuscular myoelectric signals reconstructed following TMR were recorded by implanted wire electrodes and analyzed to explore the nature of the neural-function reconstruction achieved by reinnervation of targeted muscles. Our results showed that the active myoelectric signal reconstructed in the targeted muscle was acquired one week after TMR surgery, and its amplitude gradually became stronger over time. These preliminary results from rats may serve as a basis for exploring the mechanism of neural-function reconstruction by the TMR technique in human subjects.

靶向肌肉神经功能重建机理研究

研究目的:靶向肌肉神经重建(target muscle reinnervation, TMR)技术通过对靶向肌肉植入新的神经,实现神经对靶向肌肉的重新支配。TMR技术可以为截肢患者提供丰富的肌电信息源,并可实现对假肢的直觉控制。临床上TMR已取得成功,但神经重建后功能康复过程和机理的研究仍然缺乏。本文通过建立基于大鼠的靶向肌肉神经重建模型,研究神经重建后神经肌肉功能的重建过程与潜在机理。
创新要点:将大鼠正中神经横断后移植到胸大肌上,建立基于大鼠的靶向肌肉神经重建模型,研究靶向肌肉神经重建的功能康复情况及内在神经机理;首次通过可植入电极实时获取大鼠肌肉内肌电信息,并评价神经重建后神经肌肉功能恢复情况;应用基于小波滤波器阵列的包络线提取方法,抽取肌肉活动时的肌电信息用于评价肌肉功能。
重要结论:动物实验结果表明:神经重建的大鼠靶向肌肉,在神经重建后一周内出现肌电信号,并随时间逐渐增强;失神经支配的靶向肌肉,其肌电信号并无改善。通过对神经重建后功能恢复及机理的研究,人们可探索不同治疗方法对神经重建的作用,改善神经重建效果,优化肌电假肢控制。
神经功能重建;靶向肌肉再支配;肌肉内肌电信号;肌电控制假肢

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ajiboye, A.B., Weir, R.F., 2005. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans. Neur. Syst. Rehabil. Eng., 13(3):280-291.

[2]English, A.W., Chen, Y., Carp, J.S., et al., 2006. Recovery of electromyographic activity after transection and surgical repair of the rat sciatic nerve. J. Neurophysiol., 97(2): 1127-1134.

[3]Hijjawi, J.B., Kuiken, T.A., Lipschutz, R.D., et al., 2006. Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast. Reconstr. Surg., 118(7):1573-1578.

[4]Hu, X.L., Tong, K.Y., Song, R., et al., 2009. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J. Electromyogr. Kinesiol., 19(4):639-650.

[5]Huang, Y.H., Englehart, K.B., Hudgins, B., et al., 2005. A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng., 52(11):1801-1811.

[6]Hudgins, B., Parker, P., Scott, R.N., 1993. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng., 40(1):82-94.

[7]Kuiken, T.A., Dumanian, G.A., Lipschutz, R.D., et al., 2004. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int., 28(3):245-253.

[8]Kuiken, T.A., Miller, L.A., Lipschutz, R.D., et al., 2007. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. The Lancet, 369(9559):371-380.

[9]Kuiken, T.A., Li, G.L., Lock, B.A., et al., 2009. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA, 301(6):619-628.

[10]Li, G.L., Schultz, A.E., Kuiken, T.A., 2010. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans. Neur. Syst. Rehabil. Eng., 18(2):185-192.

[11]Li, X., Zhou, P., Aruin, A.S., 2007. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection. Ann. Biomed. Eng., 35(9):1532-1538.

[12]Miller, L.A., Stubblefield, K.A., Lipschutz, R.D., et al., 2008. Improved myoelectric prosthesis control using targeted reinnervation surgery: a case series. IEEE Trans. Neur. Syst. Rehabil. Eng., 16(1):46-50.

[13]Mummidisetty, C.K., 2009. Analysis of EMG During Clonus Using Wavelets. MS Thesis, University of Miami, Florida, USA.

[14]Parker, P.A., Scott, R.N., 1986. Myoelectric control of prostheses. Crit. Rev. Biomed. Eng., 13(4):283-310.

[15]Roy, R.R., Hutchison, D.L., Pierotti, D.J., et al., 1991. EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J. Appl. Physiol., 70(6): 2522-2529.

[16]Sabatier, M.J., To, B.N., Rose, S., et al., 2011. Chondroitinase ABC reduces time to muscle reinnervation and improves functional recovery after sciatic nerve transection in rats. J. Neurophysiol., 107(3):747-757.

[17]Solnik, S., de Vita, P., Rider, P., et al., 2008. Teager–Kaiser operator improves the accuracy of EMG onset detection independent of signal-to-noise ratio. Acta Bioeng. Biomech., 10(2):65-68.

[18]Staude, G., Flachenecker, C., Daumer, M., et al., 2001. Onset detection in surface electromyographic signals: a systematic comparison of methods. EURASIP J. Adv. Signal Process., 2001:867853.

[19]Stubblefield, K.A., Miller, L.A., Lipschutz, R.D., et al., 2009. Occupational therapy protocol for amputees with targeted muscle reinnervation. J. Rehabil. Res. Devel., 46(4):481-488.

[20]Tysseling, V.M., Janes, L., Imhoff, R., et al., 2013. Design and evaluation of a chronic EMG multichannel detection system for long-term recordings of hindlimb muscles in behaving mice. J. Electromyogr. Kinesiol., 23(3):531-539.

[21]von Tscharner, V., 2000. Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J. Electromyogr. Kinesiol., 10(6): 433-445.

[22]Zhou, H., Wu, F.X., Yang, L., et al., 2013. A preliminary analysis of reconstructed nerve function using targeted muscle reinnervation in a rat model. 6th Int. IEEE/EMBS Conf. on Neural Engineering, p.1602-1605.

[23]Zhou, P., Lowery, M.M., Englehart, K.B., et al., 2007. Decoding a new neural machine interface for control of artificial limbs. J. Neurophysiol., 98(5):2974-2982.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE