CLC number: TP301.6
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-06-06
Cited: 1
Clicked: 7065
Mo-fei Song, Zheng-xing Sun, Yan Zhang, Fei-qian Zhang. Synthesis of 3D models by Petri net[J]. Journal of Zhejiang University Science C, 2013, 14(7): 521-529.
@article{title="Synthesis of 3D models by Petri net",
author="Mo-fei Song, Zheng-xing Sun, Yan Zhang, Fei-qian Zhang",
journal="Journal of Zhejiang University Science C",
volume="14",
number="7",
pages="521-529",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.CIDE1305"
}
%0 Journal Article
%T Synthesis of 3D models by Petri net
%A Mo-fei Song
%A Zheng-xing Sun
%A Yan Zhang
%A Fei-qian Zhang
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 7
%P 521-529
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.CIDE1305
TY - JOUR
T1 - Synthesis of 3D models by Petri net
A1 - Mo-fei Song
A1 - Zheng-xing Sun
A1 - Yan Zhang
A1 - Fei-qian Zhang
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 7
SP - 521
EP - 529
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.CIDE1305
Abstract: This paper presents a synthesis method for 3D models using petri net. Feature structure units from the example model are extracted, along with their constraints, through structure analysis, to create a new model using an inference method based on petri net. Our method has two main advantages: first, 3D model pieces are delineated as the feature structure units and petri net is used to record their shape features and their constraints in order to outline the model, including extending and deforming operations; second, a construction space generating algorithm is presented to convert the curve drawn by the user into local shape controlling parameters, and the free form deformation (FFD) algorithm is used in the inference process to deform the feature structure units. Experimental results showed that the proposed method can create large-scale complex scenes or models and allow users to effectively control the model result.
[1]Biggers, K., Keyser, J., 2011. Inference-based procedural modeling of solids. Comput.-Aid. Des., 43(11):1391-1401.
[2]Bokeloh, M., Wand, M., Seidel, H., 2010. A connection between partial symmetry and inverse procedural modeling. ACM Trans. Graph., 29(4), Article 104, p.1-10.
[3]Bokeloh, M., Wand, M., Koltun, V., Seidel, H., 2011. Pattern-aware shape deformation using sliding dockers. ACM Trans. Graph., 30(6), Article 123, p.1-10.
[4]Bokeloh, M., Wand, M., Seidel, H., Koltun, V., 2012. An algebraic model for parameterized shape editing. ACM Trans. Graph., 31(4), Article 78, p.1-10.
[5]Catalano, C.E., Mortara, M., Spagnuolo, M., Falcidieno, B., 2011. Semantics and 3D media: current issues and perspectives. Comput. Graph., 35(4):869-877.
[6]Chaudhuri, S., Koltun, V., 2010. Data-driven suggestions for creativity support in 3D modeling. ACM Trans. Graph., 29(6), Article 183, p.1-10.
[7]Chaudhuri, S., Kalogerakis, E., Guibas, L., Koltun, V., 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph., 30(4), Article 35, p.1-10.
[8]Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D., 2003. A search engine for 3D models. ACM Trans. Graph., 22(1):83-105.
[9]Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D., 2004. Modeling by example. ACM Trans. Graph., 23(3):652-663.
[10]Gal, R., Sorkine, O., Mitra, N.J., Cohen-Or, D., 2009. iWIRES: an analyze-and-edit approach to shape manipulation. ACM Trans. Graph., 28(3), Article 33, p.1-10.
[11]Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V., 2012. A probabilistic model for component-based shape synthesis. ACM Trans. Graph., 31(4), Article 55, p.1-11.
[12]Merrell, P., Manocha, D., 2011. Model synthesis: a general procedural modeling algorithm. IEEE Trans. Visual. Comput. Graph., 17(6):715-728.
[13]Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.J., 2008. Discovering structural regularity in 3D geometry. ACM Trans. Graph., 27(3), Article 43, p.1-11.
[14]Peterson, J.L., 1977. Petri nets. ACM Comput. Surv., 9(3):223-252.
[15]Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. ACM SIGRAPH Comput. Graph., 20(4):151-160.
[16]Tangelder, J.W.H., Veltkamp, R.C., 2004. A Survey of Content Based 3D Shape Retrieval Methods. Proc. Shape Modeling Applications, p.145-156.
[17]Xu, K., Zhang, H., Cohen-Or, D., Chen, B., 2012. Fit and diverse: set evolution for inspiring 3D shape galleries. ACM Trans. Graph., 31(4), Article 57, p.1-10.
Open peer comments: Debate/Discuss/Question/Opinion
<1>