Full Text:   <2013>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 1138

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2022 Vol.5 No.1 P.141-152

http://doi.org/10.1007/s42242-021-00139-2


Introducing 3D-potting: a novel production process for artificial membrane lungs with superior blood flow design


Author(s):  Felix Hesselmann, Jannis M. Focke, Peter C. Schlanstein, Niklas B. Steuer, Andreas Kaesler, Sebastian D. Reinartz, Thomas Schmitz-Rode, Ulrich Steinseifer, Sebastian V. Jansen & Jutta Arens

Affiliation(s):  Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany; more

Corresponding email(s):   hesselmann@ame.rwth-aachen.de

Key Words:  Potting process, Flow design, Membrane lung, Artificial lung, Hollow fiber membrane module, Manufacturing


Share this article to: More

Felix Hesselmann, Jannis M. Focke, Peter C. Schlanstein, Niklas B. Steuer, Andreas Kaesler, Sebastian D. Reinartz, Thomas Schmitz-Rode, Ulrich Steinseifer, Sebastian V. Jansen & Jutta Arens . Introducing 3D-potting: a novel production process for artificial membrane lungs with superior blood flow design[J]. Journal of Zhejiang University Science D, 2022, 5(1): 141-152.

@article{title="Introducing 3D-potting: a novel production process for artificial membrane lungs with superior blood flow design",
author="Felix Hesselmann, Jannis M. Focke, Peter C. Schlanstein, Niklas B. Steuer, Andreas Kaesler, Sebastian D. Reinartz, Thomas Schmitz-Rode, Ulrich Steinseifer, Sebastian V. Jansen & Jutta Arens ",
journal="Journal of Zhejiang University Science D",
volume="5",
number="1",
pages="141-152",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-021-00139-2"
}

%0 Journal Article
%T Introducing 3D-potting: a novel production process for artificial membrane lungs with superior blood flow design
%A Felix Hesselmann
%A Jannis M. Focke
%A Peter C. Schlanstein
%A Niklas B. Steuer
%A Andreas Kaesler
%A Sebastian D. Reinartz
%A Thomas Schmitz-Rode
%A Ulrich Steinseifer
%A Sebastian V. Jansen & Jutta Arens
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 1
%P 141-152
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00139-2

TY - JOUR
T1 - Introducing 3D-potting: a novel production process for artificial membrane lungs with superior blood flow design
A1 - Felix Hesselmann
A1 - Jannis M. Focke
A1 - Peter C. Schlanstein
A1 - Niklas B. Steuer
A1 - Andreas Kaesler
A1 - Sebastian D. Reinartz
A1 - Thomas Schmitz-Rode
A1 - Ulrich Steinseifer
A1 - Sebastian V. Jansen & Jutta Arens
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 1
SP - 141
EP - 152
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00139-2


Abstract: 
Currently, artificial-membrane lungs consist of thousands of hollow fiber membranes where blood flows around the fibers and gas flows inside the fibers, achieving diffusive gas exchange. At both ends of the fibers, the interspaces between the hollow fiber membranes and the plastic housing are filled with glue to separate the gas from the blood phase. During a uniaxial centrifugation process, the glue forms the “potting.” The shape of the cured potting is then determined by the centrifugation process, limiting design possibilities and leading to unfavorable stagnation zones associated with blood clotting. In this study, a new multiaxial centrifugation process was developed, expanding the possible shapes of the potting and allowing for completely new module designs with potentially superior blood flow guidance within the potting margins. Two-phase simulations of the process in conceptual artificial lungs were performed to explore the possibilities of a biaxial centrifugation process and determine suitable parameter sets. A corresponding biaxial centrifugation setup was built to prove feasibility and experimentally validate four conceptual designs, resulting in good agreement with the simulations. In summary, this study shows the feasibility of a multiaxial centrifugation process allowing greater variety in potting shapes, eliminating inefficient stagnation zones and more favorable blood flow conditions in artificial lungs.

亚琛工业大学Hesselmann等 | 3D灌封:一种具有卓越血流设计的新型人工膜肺生产工艺

本研究论文聚焦多轴灌封工艺和其在人工肺制造上的应用。目前,人工膜肺由数千个中空纤维膜组成,其中血液在纤维周围流动,气体在纤维内部流动,实现扩散气体交换。在纤维的两端,中空纤维膜和塑料外壳之间的间隙填充胶水,以将气体与血相分离。在单轴离心过程中,胶水形成"灌封"。然后通过离心过程确定固化灌封的形状,这样的制造方法限制了设计可能性,并导致会使血液凝固相关的不利停滞区。在本研究中,我们开发了一种新的多轴离心工艺,扩大了灌封的可能形状,并允许全新的模块设计,在灌封边缘内具有潜在的优越血流引导。对设计的人工肺中的交换过程进行了两阶段模拟,以探索双轴离心过程的可能性并确定合适的参数集。构建了相应的双轴离心装置,以证明本设计的可行性,且通过实验验证了四个概念设计,从而与仿真结果保持良好一致。总结来说,这项研究显示了多轴离心过程的可行性,该过程允许灌封形状的多样性,消除低效的停滞区和更有利的人工肺血流条件。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE