CLC number: TM73
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-07-14
Cited: 7
Clicked: 14852
Fadi M. Albatsh, Saad Mekhilef, Shameem Ahmad, H. Mokhlis, M. A. Hassan. Enhancing power transfer capability through flexible AC transmission system devices: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(8): 658-678.
@article{title="Enhancing power transfer capability through flexible AC transmission system devices: a review",
author="Fadi M. Albatsh, Saad Mekhilef, Shameem Ahmad, H. Mokhlis, M. A. Hassan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="8",
pages="658-678",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500019"
}
%0 Journal Article
%T Enhancing power transfer capability through flexible AC transmission system devices: a review
%A Fadi M. Albatsh
%A Saad Mekhilef
%A Shameem Ahmad
%A H. Mokhlis
%A M. A. Hassan
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 8
%P 658-678
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500019
TY - JOUR
T1 - Enhancing power transfer capability through flexible AC transmission system devices: a review
A1 - Fadi M. Albatsh
A1 - Saad Mekhilef
A1 - Shameem Ahmad
A1 - H. Mokhlis
A1 - M. A. Hassan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 8
SP - 658
EP - 678
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500019
Abstract: Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such as voltage and frequency instability and power quality issues. To overcome these problems, the capacity for available power transfer of a transmission network should be enhanced. Researchers worldwide have addressed this issue by using flexible AC transmission system (FACTS) devices. We have conducted a comprehensive review of how FACTS controllers are used to enhance the available transfer capability (ATC) and power transfer capability (PTC) of power system networks. This review includes a discussion of the classification of different FACTS devices according to different factors. The popularity and applications of these devices are discussed together with relevant statistics. The operating principles of six major FACTS devices and their application in increasing ATC and PTC are also presented. Finally, we evaluate the performance of FACTS devices in ATC and PTC improvement with respect to different control algorithms.
Good representation on the overview of FACTS devices and their classification.
[1]ABB, 2012. Flexible Alternating Current Transmission Systems (FACTS). Available from http://www.abb.com/FACTS.
[2]Abdel-Rahman, M.H., Youssef, F.M.H., Saber, A.A., 2006. New static var compensator control strategy and coordination with under-load tap changer. IEEE Trans. Power Deliv., 21(3):1630-1635.
[3]Abido, M.A., 1999. Thyristor controlled phase shifter based stabilizer design using simulated annealing algorithm. Proc. Int. Conf. on Electric Power Engineering, p.307-312.
[4]Abido, M.A., 2009. Power system stability enhancement using FACTS controllers: a review. Arab. J. Sci. Eng., 34(1B):153-172.
[5]Abraham, R.J., Das, D., Patra, A., 2007. Effect of TCPS on oscillations in tie-power and area frequencies in an interconnected hydrothermal power system. IET Gener. Transm. Distr., 1(4):632-639.
[6]Acha, E., Fuerte-Esquivel, C.R., Ambríz-Pérez, H., et al., 2004. FACTS: Modelling and Simulation in Power Networks. Wiley, UK.
[7]Acharya, N., Sode-Yome, A., Mithulananthan, N., 2005. Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits. Proc. Australasian Universities Power Engineering Conf., p.533-538.
[8]Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014a. A placement method of fuzzy based unified power flow controller to enhance voltage stability margin. Proc. 16th European Conf. on Power Electronics and Applications, p.1-10.
[9]Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014b. An approach to improve active power flow capability by using dynamic unified power flow controller. Proc. IEEE Innovative Smart Grid Technologies-Asia, p.249-254.
[10]Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014c. Fuzzy based controller for dynamic unified power flow controller to enhance power transfer capability. Energy Conv. Manag., 79:652-665.
[11]Ahmad, S., Mekhilef, S., Albatsh, F.M., 2014d. Voltage stability improvement by placing unified power flow controller (UPFC) at suitable location in power system network. Proc. Saudi Arabia Smart Grid Conf., p.1-8.
[12]Ajami, A., Armaghan, M., 2013. A comparative study in power oscillation damping by STATCOM and SSSC based on the multiobjective PSO algorithm. Turk. J. Electr. Eng. Comput. Sci., 21:213-224.
[13]Alabduljabbar, A.A., Milanović, J.V., 2010. Assessment of techno-economic contribution of FACTS devices to power system operation. Electr. Power Syst. Res., 80(10):1247-1255.
[14]Albatsh, F., 2009. Multirate Ripple-Free Deadbeat Control. MS Thesis, Department of Electrical Engineering, Islamic University of Gaza, Gaza, Palestine.
[15]Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2014. D-Q model of fuzzy based UPFC to control power flow in transmission network. Proc. 7th IET Int. Conf. on Power Electronics, Machines and Drives, p.1-6.
[16]Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015a. Dynamic power flow control for transmission lines using D-Q fuzzy based unified power flow controller. Appl. Math. Inform. Sci., 9(12):1-15.
[17]Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015b. Optimal placement of unified power flow controllers to improve dynamic voltage stability using power system variable based voltage stability indices. PLoS One, 10(4):1-32.
[18]Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015c. Power quality improvement in transmission network using fuzzy logic based unified power flow controller. Proc. IEEE Int. Conf. on Industrial Technology, p.1-6.
[19]Ambríz-Pérez, H., Acha, E., Fuerte-Esquivel, C.R., 2000. Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies. IEEE Trans. Power Syst., 15(1):129-136.
[20]Arzani, A., Jazaeri, M., Alinejad-Beromi, Y., 2008. Available transfer capability enhancement using series FACTS devices in a designed multi-machine power system. Proc. 43rd Int. Universities Power Engineering Conf., p.1-6.
[21]Asare, P., Diez, T., Galli, A., et al., 1994. An Overview of Flexible AC Transmission Systems. Technical Report, Department of Electrical and Computer Engineering, Purdue University, USA.
[22]Babu, A.V.N., Sivanagaraju, S., 2012. Assessment of available transfer capability for power system network with multi-line FACTS device. Int. J. Electr. Eng., 5(1):71-78.
[23]Bachmann, U., Berger, F., Reinisch, R., et al., 2002. Possibilities of multifunctional FACTS application in the European electric power system under the changing conditions of the liberalized electricity market. CIGRE Session, Germany.
[24]Basu, M., 2011. Multi-objective optimal power flow with FACTS devices. Energy Conv. Manag., 52(2):903-910.
[25]Bhasaputra, P., Ongsakul, W., 2002. Optimal power flow with multi-type of FACTS devices by hybrid TS/SA approach. Proc. IEEE Int. Conf. on Industrial Technology, 1:285-290.
[26]Bollen, M.H., 1999. Understanding Power Quality Problems: Voltage Sags and Interruptions. Wiley-IEEE Press, New York, USA.
[27]Bulac, C., Diaconu, C., Eremia, M., et al., 2009. Power transfer capacity enhancement using SVC. Proc. IEEE Bucharest PowerTech, p.1-5.
[28]Burke, E., de Causmaecker, P., Berghe, G.V., 1999. A hybrid tabu search algorithm for the nurse rostering problem. Proc. 2nd Asia-Pacific Conf. on Simulated Evolution and Learning, p.187-194.
[29]Cai, H., Qu, Z., Gan, D., 2002. Determination of the power transfer capacity of a UPFC with consideration of the system and equipment constraints and of installation locations. IEE Proc.-Gener. Transm. Distr., 149(1):114-120.
[30]Cai, L.J., Erlich, I., Stamtsis, G., 2004. Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. Proc. IEEE Power Systems Conf. and Exposition, p.201-207.
[31]Chansareewittaya, S., Jirapong, P., 2010. Power transfer capability enhancement with multitype FACTS controllers using particle swarm optimization. Proc. IEEE Region 10 Conf., p.42-47.
[32]Chansareewittaya, S., Jirapong, P., 2011. Power transfer capability enhancement with optimal maximum number of FACTS controllers using evolutionary programming. Proc. 37th Annual Conf. on IEEE Industrial Electronics Society, p.4733-4738.
[33]Chansareewittaya, S., Jirapong, P., 2012. Total transfer capability enhancement with optimal number of FACTS controllers using hybrid TSSA. Proc. IEEE Southeastcon, p.1-7.
[34]Chawla, S., Garg, S., Ahuja, B., 2009. Optimal location of series-shunt FACTS device for transmission line compensation. Proc. Int. Conf. on Control, Automation, Communication and Energy Conservation, p.1-6.
[35]Chengaiah, C., Satyanarayana, R.V.S., 2012. Power flow assessment in transmission lines using Simulink model with UPFC. Proc. Int. Conf. on Computing, Electronics and Electrical Technologies, p.151-155.
[36]Chiang, H.D., Flueck, A.J., Shah, K.S., et al., 1995. CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations. IEEE Trans. Power Syst., 10(2):623-634.
[37]Chung, C.Y., Wang, K.W., Tse, C.T., et al., 2002. Power-system stabilizer (PSS) design by probabilistic sensitivity indexes (PSIs). IEEE Trans. Power Syst., 17(3):688-693.
[38]Del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003. A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst., 18:1487-1496.
[39]Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. Proc. 6th Int. Symp. on Micro Machine and Human Science, p.39-43.
[40]Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress on Evolutionary Computation, p.81-86.
[41]El-Sadek, M.Z., Dessouky, M.M., Mahmoud, G.A., et al., 1997. Enhancement of steady-state voltage stability by static VAR compensators. Electr. Power Syst. Res., 43(3):179-185.
[42]Elsayed, B.A., Hassan, M.A., Mekhilef, S., 2013. Decoupled third-order fuzzy sliding model control for cart-inverted pendulum system. Appl. Math. Inform. Sci., 7(1):193-201.
[43]Esmaeili, A., Esmaeili, S., 2012. A new multiobjective optimal allocation of multitype FACTS devices for total transfer capability enhancement and improving line congestion using the harmony search algorithm. Turk. J. Electr. Eng. Comput. Sci., 21:957-979.
[44]Farahmand, H., Rashidinejad, M., Mousavi, A., et al., 2012. Hybrid mutation particle swarm optimisation method for available transfer capability enhancement. Int. J. Electr. Power Energy Syst., 42(1):240-249.
[45]Fardanesh, B., 2004. Optimal utilization, sizing, and steady-state performance comparison of multiconverter VSC-based FACTS controllers. IEEE Trans. Power Deliv., 19(3):1321-1327.
[46]Gama, C., Ängquist, L., Ingeström, G., et al., 2000. Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Proc. CIGRE Session, Paper 14-104.
[47]Ge, S.Y., Chung, T.S., 1999. Optimal active power flow incorporating power flow control needs in flexible AC transmission systems. IEEE Trans. Power Syst., 14(2):738-744.
[48]Gerbex, S., Cherkaoui, R., Germond, A.J., 2001. Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans. Power Syst., 16(3):537-544.
[49]Gitizadeh, M., Kalantar, M., 2009. Optimum allocation of FACTS devices in FARS regional electric network using genetic algorithm based goal attainment. J. Zhejiang Univ.-Sci. A, 10(4):478-487.
[50]Goffe, W.L., Ferrier, G.D., Rogers, J., 1994. Global optimization of statistical functions with simulated annealing. J. Econom., 60(1-2):65-99.
[51]Goldberg, D.E., Holland, J.H., 1988. Genetic algorithms and machine learning. Mach. Learn., 3(2-3):95-99.
[52]Grigsby, L.L., 2012. Power System Stability and Control (3rd Ed.). CRC Press, USA.
[53]Grijalva, S., Sauer, P.W., 1999. Reactive power considerations in linear ATC computation. Proc. 32nd Annual Hawaii Int. Conf. on Systems Sciences, p.327-340.
[54]Gyugyi, L., Schauder, C.D., Williams, S.L., et al., 1995. The unified power flow controller: a new approach to power transmission control. IEEE Trans. Power Deliv., 10(2):1085-1097.
[55]Hamoud, G., 2000. Assessment of available transfer capability of transmission systems. IEEE Trans. Power Syst., 15(1):27-32.
[56]Han, Y.S., Suh, I.Y., Kim, J.M., et al., 2004. Commissioning and testing of the KangJin UPFC in Korea. Proc. CIGRE Session.
[57]Handfield, R., Walton, S.V., Sroufe, R., et al., 2002. Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur. J. Oper. Res., 141(1):70-87.
[58]Haque, M.H., 2004. Power flow control and voltage stability limit: regulating transformer versus UPFC. IEE Proc.-Gener. Transm. Distr., 151(3):299-304.
[59]Hashemi, Y., Kazemzadeh, R., Azizian, M.R., et al., 2012. Improving power system dynamic performance using attuned design of dual-input PSS and UPFC PSD controller. Front. Electr. Electron. Eng., 7(4):416-426.
[60]Hashmani, A.A., Wang, Y., Lie, T.T., 2001. Design and application of a nonlinear coordinated excitation and TCPS controller in power systems. Proc. American Control Conf., p.811-816.
[61]Hingorani, N.G., 1993. Flexible AC transmission. IEEE Spect., 30(4):40-45.
[62]Hingorani, N.G., Gyugyi, L., 1999. Understanding FACTS: Concept and Technology of Flexible AC Transmission Systems. Wiley-IEEE Press, New York, USA.
[63]Holmberg, D., Danielsson, M., Halvarsson, P., et al., 1998. The stode thyristor controlled series capacitor. Proc. CIGRE Session.
[64]Holmes, D.G., Lipo, T.A., 2003. Pulse Width Modulation for Power Converters: Principles and Practice. Wiley-IEEE Press, USA.
[65]Huang, Z., Ni, Y., Shen, C., et al., 2000. Application of unified power flow controller in interconnected power systems—modeling, interface, control strategy, and case study. IEEE Trans. Power Syst., 15(2):817-824.
[66]Idris, R.M., Khairuddin, A., Mustafa, M.W., 2009a. Optimal allocation of FACTS devices for ATC enhancement using bees algorithm. Int. Scholarly Sci. Res. Innov., 3(6):257-264.
[67]Idris, R.M., Kharuddin, A., Mustafa, M.W., 2009b. Optimal choice of FACTS devices for ATC enhancement using bees algorithm. Proc. Australasian Universities Power Engineering Conf., p.1-6.
[68]Idris, R.M., Khairuddin, A., Mustafa, M.W., 2010. Optimal allocation of FACTS devices in deregulated electricity market using bees algorithm. WSEAS Trans. Power Syst., 5(2):108-119.
[69]Islam, M., Mekhilef, S., Albatsh, F.M., 2014. An improved transformerless grid connected photovoltaic inverter with common mode leakage current elimination. Proc. 7th Int. Conf. on Power Electronics, Machines and Drives, p.1-6.
[70]Iwamoto, S., Tamura, Y., 1981. A load flow calculation method for ill-conditioned power systems. IEEE Trans. Power App. Syst., PAS-100(4):1736-1743.
[71]Jain, T., Singh, S.N., Srivastava, S.C., 2009. Dynamic ATC enhancement through optimal placement of FACTS controllers. Electr. Power Syst. Res., 79(11):1473-1482.
[72]Jiang, X., Fang, X., Chow, J.H., et al., 2008. A novel approach for modeling voltage-sourced converter-based FACTS controllers. IEEE Trans. Power Deliv., 23(4):2591-2598.
[73]Jovcic, D., Pillai, G.N., 2005. Analytical modeling of TCSC dynamics. IEEE Trans. Power Deliv., 20:1097-1104.
[74]Kakimoto, N., Phongphanphanee, A., 2003. Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Trans. Power Deliv., 18:1051-1059.
[75]Kannan, S., Jayaram, S., Salama, M.M.A., 2004. Real and reactive power coordination for a unified power flow controller. IEEE Trans. Power Syst., 19(3):1454-1461.
[76]Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942-1948.
[77]Khaburi, M.A., Haghifam, M.R., 2010. A probabilistic modeling based approach for total transfer capability enhancement using FACTS devices. Int. J. Electr. Power Energy Syst., 32(1):12-16.
[78]Klir, G.J., Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Vol. 4. Prentice Hall, New Jersey, USA.
[79]Komoni, V., Krasniqi, I., Kabashi, G., et al., 2010. Increase power transfer capability and controlling line power flow in power system installed the FACTS. Proc. 7th Mediterranean Conf. and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, p.1-6.
[80]Kumar, A., Kumar, J., 2012. Comparison of UPFC and SEN transformer for ATC enhancement in restructured electricity markets. Int. J. Electr. Power Energy Syst., 41(1):96-104.
[81]Kumar, A., Kumar, J., 2013. ATC determination with FACTS devices using PTDFs approach for multi-transactions in competitive electricity markets. Int. J. Electr. Power Energy Syst., 44(1):308-317.
[82]Lamoree, J., Mueller, D., Vinett, P., et al., 1994. Voltage sag analysis case studies. IEEE Trans. Ind. Appl., 30(4):1083-1089.
[83]Leung, H.C., Chung, T.S., 2000. Optimal power flow with a versatile FACTS controller by genetic algorithm approach. Proc. 5th Int. Conf. on Adavances in Power System Control, Operation and Management, p.178-183.
[84]Li, N., Xu, Y., Chen, H., 2000. FACTS-based power flow control in interconnected power system. IEEE Trans. Power Syst., 15(1):257-262.
[85]Lin, H.X., 2001. Main problems of modern power quality. Power Syst. Technol., 25(10):5-12 (in Chinese).
[86]Ma, J.Z., Wu, M.L., Yang, S.B., 2009. The application of SVC for the power quality control of electric railways. Proc. Int. Conf. on Sustainable Power Generation and Supply, p.1-4.
[87]Madhusudhanarao, G., Ramarao, P.V., Kumar, T.J., 2010. Optimal location of TCSC and SVC for enhancement of ATC in a de-regulated environment using RGA. Proc. IEEE Int. Conf. on Computational Intelligence and Computing Research, p.1-6.
[88]Mahdavi, M., Fesanghary, M., Damangir, E., 2007. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput., 188(2):1567-1579.
[89]Manikandan, B., 2010. Enhancement of Available Transfer Capability with FACTS Device in the Competitive Power Market. Available from http://www.scirp.org/Journal/PaperInformation.aspx?paperID=1834.
[90]Manikandan, B.V., Raja, S.C., Venkatesh, P., 2011. Available transfer capability enhancement with FACTS devices in the deregulated electricity market. J. Electr. Eng. Technol., 6(1):14-24.
[91]Manohar, J.N., Amarnath, J., 2012. Statistical analysis of power system on enhancement of available transfer capability-applying FACTS. Int. J. Multidiscip. Sci. Eng., 3(7):33-37.
[92]Masuta, T., Yokoyama, A., 2006. ATC enhancement considering transient stability based on optimal power flow control by UPFC. Proc. Int. Conf. on Power System Technology, p.1-6.
[93]Menniti, D., Scordino, N., Sorrentino, N., 2006. A new method for SSSC optimal location to improve power system available transfer capability. Proc. IEEE PES Power Systems Conf. and Exposition, p.938-945.
[94]Moraglio, A., di Chio, C., Poli, R., 2007. Geometric particle swarm optimisation. Proc. 10th European Conf. on Genetic Programming, p.125-136.
[95]Mori, H., Goto, Y., 2000. A parallel tabu search based method for determining optimal allocation of FACTS in power systems. Proc. Int. Conf. on Power System Technology, p.1077-1082.
[96]Motoki, H., Yokoyama, A., 2004. Study on optimal power flow control for ATC enhancement by UPFC and its performance evaluation. Proc. Annual Conf. of Power & Energy Society.
[97]Nagalakshmi, S., Kamaraj, N., 2012. Comparison of computational intelligence algorithms for loadability enhancement of restructured power system with FACTS devices. Swarm Evol. Comput., 5:17-27.
[98]Naidoo, R., Pillay, P., 2007. A new method of voltage sag and swell detection. IEEE Trans. Power Deliv., 22(2):1056-1063.
[99]Naidu, K., Mokhlis, H., Bakar, A.H.A., 2014. Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int. J. Electr. Power Energy Syst., 55:657-667.
[100]Naik, R.S., Vaisakh, K., Anand, K., 2010. Application of TCSC for enhancement of ATC with PTDF in power transmission system. Proc. Int. Conf. on Intelligent and Advanced Systems, p.1-6.
[101]Nimje, A.A., Panigrahi, C.K., Mohanty, A.K., 2011. Enhanced power transfer capability by using SSSC. J. Mech. Eng. Res., 3(2):48-56.
[102]Noroozian, M., Petersson, N.A., Thorvaldson, B., et al., 2003. Benefits of SVC and STATCOM for electric utility application. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.1143-1150.
[103]Omoigui, M., Ojo, O., Karugaba, S., 2008. Analysis of multi-terminal unified power flow controller for power transfer. Proc. 40th North American Power Symp., p.1-7.
[104]Ongsakul, W., Bhasaputra, P., 2002. Optimal power flow with FACTS devices by hybrid TS/SA approach. Int. J. Electr. Power Energy Syst., 24(10):851-857.
[105]Ongsakul, W., Jirapong, P., 2005. Optimal allocation of FACTS devices to enhance total transfer capability using evolutionary programming. Proc. IEEE Int. Symp. on Circuits and Systems, p.4175-4178.
[106]Ooi, B.T., Kazerani, M., Marceau, R., et al., 1997. Mid-point siting of FACTS devices in transmission lines. IEEE Trans. Power Deliv., 12(4):1717-1722.
[107]Oskoui, A., Mathew, B., Hasler, J., et al., 2006. Holly STATCOM-FACTS to replace critical generation, operational experience. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.1393-1398.
[108]Ou, Y., Singh, C., 2002. Assessment of available transfer capability and margins. IEEE Trans. Power Syst., 17(2):463-468.
[109]Padiyar, K.R., 2007. FACTS Controllers in Power Transmission and Distribution. Motilal UK Books of India, India.
[110]Panda, S., Padhy, N.P., 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput., 8(4):1418-1427.
[111]Pandey, R.K., Chaitanya, D.V.S.B., 2012. An effective approach for ATC enhancement with FACTS device—a case study. Proc. Int. Conf. on Advances in Power Conversion and Energy Technologies, p.1-6.
[112]Papic, I., Zunko, P., Povh, D., et al., 1997. Basic control of unified power flow controller. IEEE Trans. Power Syst., 12(4):1734-1739.
[113]Parsopoulos, K.E., Vrahatis, M.N., 2002. Particle swarm optimization method for constrained optimization problems. Intell. Technol. Theory Appl., 76:214-220.
[114]Partovi, F.Y., Burton, J., Banerjee, A., 1990. Application of analytical hierarchy process in operations management. Int. J. Oper. Prod. Manag., 10(3):5-19.
[115]Paserba, J.J., 2003. How FACTS controllers-benefit AC transmission systems. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.949-956.
[116]Perkins, B.K., Iravani, M.R., 1997. Dynamic modeling of a TCSC with application to SSR analysis. IEEE Trans. Power Syst., 12:1619-1625.
[117]Pham, D., Ghanbarzadeh, A., Koc, E., et al., 2006a. The bees algorithm—a novel tool for complex optimisation problems. Proc. 2nd Virtual Int. Conf. on Intelligent Production Machines and Systems, p.454-459.
[118]Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., et al., 2006b. Optimising neural networks for identification of wood defects using the bees algorithm. Proc. IEEE Int. Conf. on Industrial Informatics, p.1346-1351.
[119]Pilotto, L.A.S., Bianco, A., Long, W.F., et al., 2003. Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Trans. Power Deliv., 18:243-252.
[120]Price, K., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: a Practical Approach to Global Optimization. Springer, Germany.
[121]Qin, A.K., Huang, V.L., Suganthan, P.N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput., 13(2):398-417.
[122]Ramesh, M., Laxmi, A.J., 2012. Stabilty of power transmission capability of HVDC system using FACTS controllers. Proc. Int. Conf. on Computer Communi-cation and Informatics, p.1-7.
[123]Ramey, D.G., Henderson, M., 2007. Overview of a special publication on transmission system application requirements for FACTS controllers. Proc. Power Engineering Society General Meeting, p.1-5.
[124]Rao, K.S., Kumar, B.K., 2011. Placement of SVC for minimizing losses and maximizing total transfer capability using particle swarm optimization. Proc. IET Conf. on Renewable Power Generation, p.1-5.
[125]Rashed, G.I., Sun, Y., Shaheen, H.I., 2012. Optimal location and parameter setting of TCSC for loss minimization based on differential evolution and genetic algorithm. Phys. Proced., 33:1864-1878.
[126]Rashidinejad, M., Farahmand, H., Fotuhi-Firuzabad, M., et al., 2008. ATC enhancement using TCSC via artificial intelligent techniques. Electr. Power Syst. Res., 78(1):11-20.
[127]Ren, H., Watts, D., Mi, Z., et al., 2009. A review of FACTS’ practical consideration and economic evaluation. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1-5.
[128]Renz, B.A., Keri, A., Mehraban, A.S., et al., 1999. AEP unified power flow controller performance. IEEE Trans. Power Deliv., 14(4):1374-1381.
[129]Rewatkar, S.B., Kewte, S.G., 2009. Role of power electronics based FACTS controller SVC for mitigation of power quality problems. Proc. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.731-735.
[130]Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. J. Math. Psychol., 15(3):234-281.
[131]Sahadat, M.N., Al Masood, N., Hossain, M.S., et al., 2011. Real power transfer capability enhancement of transmission lines using SVC. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1-4.
[132]Saltelli, A., Chan, K., Scott, E.M., 2000. Sensitivity Analysis. Wiley, New York, USA.
[133]Sannino, A., Svensson, J., Larsson, T., 2003. Power-electronic solutions to power quality problems. Electr. Power Syst. Res., 66(1):71-82.
[134]Sawhney, H., Jeyasurya, B., 2004. Application of unified power flow controller for available transfer capability enhancement. Electr. Power Syst. Res., 69(2-3):155-160.
[135]Schauder, C., Mehta, H., 1993. Vector analysis and control of advanced static VAR compensators. IEE Proc. C, 140(4):299-306.
[136]Sen, K.K., 1998. SSSC-static synchronous series compensator: theory, modeling, and application. IEEE Trans. Power Deliv., 13(1):241-246.
[137]Sen, K.K., Stacey, E.J., 1998. UPFC-unified power flow controller: theory, modeling, and applications. IEEE Trans. Power Deliv., 13(4):1453-1460.
[138]Shakarami, M.R., Kazemi, A., 2010. Robust design of static synchronous series compensator-based stabilizer for damping inter-area oscillations using quadratic mathe-matical programming. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(4):296-306.
[139]Shirmohammadi, D., Hong, H.W., Semlyen, A., et al., 1988. A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst., 3(2):753-762.
[140]Siemens, 2012. Discover the World of FACTS Technology. Available from www.siemens.com/energy/facts.
[141]Singh, B., Saha, R., 2008. Enhancing power transfer capacity of transmission system by a reduced magnetics based 48-pulse STATCOM controller. Proc. Joint Int. Conf. on Power System Technology and IEEE Power India Conf., p.1-8.
[142]Sood, V.K., 2004. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems. Springer.
[143]Sookananta, B., Galloway, S.J., Burt, G.M., et al., 2007. Employment of power transfer distribution factor for the optimal placement of FACTS devices. Proc. Int. Power Engineering Conf., p.569-573.
[144]Spee, R., Zhu, W., 1992. Flexible AC transmission systems simulation and control. Proc. 3rd AFRICON Conf., p.65-68.
[145]Srinu Naik, R., Vaisakh, K., Anand, K., 2010. Determination of ATC with PTDF using linear methods in presence of TCSC. Proc. 2nd Int. Conf. on Computer and Automation Engineering, p.146-151.
[146]Subcommittee, P.M., 1979. IEEE reliability test system. IEEE Trans. Power App. Syst., 6:2047-2054.
[147]Sun, J., Czarkowski, D., Zabar, Z., 2002. Voltage flicker mitigation using PWM-based distribution STATCOM. Proc. IEEE Power Engineering Society Summer Meeting, p.616-621.
[148]Takasaki, M., 2006. Power transfer capability enhancement with UPFC under circumstances of uncertain power flow pattern. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.659-665.
[149]Tang, B.F., Fan, H., Wang, X.W., et al., 2010. The dynamic simulation research on application of SVC in the south Hebei power grid. Proc. China Int. Conf. on Electricity Distribution, p.1-4.
[150]Trzynadlowski, A.M., Blaabjerg, F., Pedersen, J.K., et al., 1994. Random pulse width modulation techniques for converter-fed drive systems—a review. IEEE Trans. Ind. Appl., 30(5):1166-1175.
[151]Tsoulos, I.G., 2008. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput., 203(2):598-607.
[152]van Laarhoven, P.J., Aarts, E.H., 1987. Simulated Annealing. Springer.
[153]Vara Prasad, J., Sai Ram, I., Jayababu, B., 2011. Genetically optimized FACTS controllers for available transfer capability enhancement. Int. J. Comput. Appl., 19(4):23-27.
[154]Vasquez-Arnez, R.L., Zanetta, L.C., 2008. A novel approach for modeling the steady-state VSC-based multiline FACTS controllers and their operational constraints. IEEE Trans. Power Deliv., 23(1):457-464.
[155]Venkatesh, B., George, M.K., Gooi, H.B., 2004. Fuzzy OPF incorporating UPFC. IEE Proc. C, 151(5):625-629.
[156]Venter, G., Sobieszczanski-Sobieski, J., 2003. Particle swarm optimization. AIAA J., 41(8):1583-1589.
[157]Visakha, K., Thukaram, D., Jenkins, L., 2004. Application of UPFC for system security improvement under normal and network contingencies. Electr. Power Syst. Res., 70(1):46-55.
[158]Wang, H.F., Swift, F.J., Li, M., 1997. Analysis of thyristor-controlled phase shifter applied in damping power system oscillations. Int. J. Electr. Power Energy Syst., 19(1):1-9.
[159]Watts, D., Ren, H., 2007. FACTS: characteristics, applications and economic value: a literature review. Proc. 7th IASTED Int. Conf. on Power and Energy Systems, p.450-455.
[160]Xiong, W.Q., Zhang, Y.P., Wei, P., 2004. An improved real-code genetic algorithm. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2361-2364.
[161]Yang, H.T., Yang, P.C., Huang, C.L., 1996. Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst., 11(1):112-118.
[162]Yousefi-Talouki, A., Gholamian, S.A., Hosseini, M., et al., 2010. Optimal power flow with unified power flow controller using artificial bee colony algorithm. Int. Rev. Electr. Eng., 5(6):2773-2782.
[163]Yuryevich, J., Wong, K.P., 1999. Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power Syst., 14(4):1245-1250.
[164]Zhang, X.P., Handschin, E.J., 2001. Advanced implementation of UPFC in a nonlinear interior-point OPF. IEE Proc. C, 148(5):489-496.
[165]Zhang, X.P., Handschin, E., Yao, M., 2004. Multi-control functional static synchronous compensator (STATCOM) in power system steady-state operations. Electr. Power Syst. Res., 72(3):269-278.
[166]Zhang, X.P., Rehtanz, C., Pal, B., 2012. Flexible AC Transmission Systems: Modelling and Control. Springer.
[167]Zhang, Y.K., Zhang, Y., 2006. A novel power injection model of embedded SSSC with multi-control modes for power flow analysis inclusive of practical constraints. Electr. Power Syst. Res., 76(5):374-381.
[168]Zheng, J.G., Wang, X., 2011. Diversity composite differential evolution algorithm for constrained optimization problems. Comput. Integ. Manuf. Syst., 17(11):2447-2456.
[169]Zheng, Z., Yang, G., Geng, H., 2013. Coordinated control of a doubly-fed induction generator-based wind farm and a static synchronous compensator for low voltage ride-through grid code compliance during asymmetrical grid faults. Energies, 6(9):4660-4681.
[170]Zhong, W.L., Wang, H.S., Zhang, J., et al., 2008. Novel particle swarm optimization with heuristic mutation. Comput. Eng. Des., 29(13):3402-3406 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>
ikeli@University<ikeliprivateline@gmail.com>
2015-11-17 01:27:55
pls. help me with material