CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-05-06
Cited: 3
Clicked: 7332
Zhao Wang, Zhong-xuan Luo, Jie-lin Zhang, Emil Saucan. ARAP++: an extension of the local/global approach to mesh parameterization[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(6): 501-515.
@article{title="ARAP++: an extension of the local/global approach to mesh parameterization",
author="Zhao Wang, Zhong-xuan Luo, Jie-lin Zhang, Emil Saucan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="6",
pages="501-515",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500184"
}
%0 Journal Article
%T ARAP++: an extension of the local/global approach to mesh parameterization
%A Zhao Wang
%A Zhong-xuan Luo
%A Jie-lin Zhang
%A Emil Saucan
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 6
%P 501-515
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500184
TY - JOUR
T1 - ARAP++: an extension of the local/global approach to mesh parameterization
A1 - Zhao Wang
A1 - Zhong-xuan Luo
A1 - Jie-lin Zhang
A1 - Emil Saucan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 6
SP - 501
EP - 515
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500184
Abstract: mesh parameterization is one of the fundamental operations in computer graphics (CG) and computer-aided design (CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for single- and multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible (ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties (angle and area) of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.
This paper proposes an extended local/global parameterization (ARAP++) method for single-boundary and multi-boundary triangular meshes. It suggests two main extensions in comparison with ARAP. 1) The current ARAP scheme combines a local mapping from a 3D triangle to the plane with a global ‘stitch’ operation for individual triangles, while the proposed ARAP++ adopts a global operation that stitches the 1-ring patches together; 2) Similar to energy minimization of mesh parameterization, the scheme of this paper is based on optimization of the spring energy, which can cover the ARAP approach (based on the optimization of Dirichlet energy) as a special case. The main interesting point is that each triangle is looked upon 3 different view points: those of the 3 vertices. An interesting property is that each angle can therefore be corrected is order to sum to Pi around each vertex.
[1]Aigerman, N., Lipman, Y., 2013. Injective and bounded distortion mappings in 3D. ACM Trans. Graph., 32(4), Article 106.
[2]Bouaziz, S., Deuss, M., Schwartzburg, Y., et al., 2012. Shape-up: shaping discrete geometry with projections. Comput. Graph. Forum, 31(5):1657-1667.
[3]Chen, B.M., Gotsman, C., Bunin, G., 2008. Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum, 27(2):449-458.
[4]Chen, Z., Liu, L., Zhang, Z., et al., 2007. Surface paramete-rization via aligning optimal local flattening. Proc. Symp. on Solid and Physical Modeling, p.291-296.
[5]Degener, P., Meseth, J., Klein, R., 2003. An adaptable surface parameterization method. Proc. 12th Int. Meshing Roundtable, p.227-237.
[6]Desbrun, M., Meyer, M., Allize, P., 2002. Intrinsic parameterization of surface meshes. Comput. Graph. Forum, 21(2):209-218.
[7]Eck, M., DeRose, T., Duchamp, T., et al., 1995. Multi-resolution analysis of arbitrary meshes. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.173-182.
[8]Floater, M.S., 1997. Parameterization and smooth approximation of surface triangulations. Comput. Aid. Geom. Des., 14(3):231-250.
[9]Floater, M.S., 2003. Mean value coordinates. Comput. Aid. Geom. Des., 20(1):19-27.
[10]Floater, M.S., Hormann, K., 2005. Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (Eds.), Advances in Multiresolution for Geometric Modelling, p.157-186.
[11]Gortler, S., Gotsman, C., Thurston, D., 2006. Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aid. Geom. Des., 23(2):83-112.
[12]Gower, J.C., Dijksterhuis, G.B., 2004. Procrustes Problems. Oxford University Press, Oxford.
[13]Gu, X., Yau, S., 2002. Computing conformal structures of surfaces. Commun. Inform. Syst., 2(2):121-146.
[14]Gu, X., Yau, S., 2003. Global conformal surface parameterization. Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, p.127-137.
[15]Haker, S., Angenent, S., Tannenbaum, A., et al., 2000. Conformal surface parameterization for texture mapping. IEEE Trans. Visual. Comput. Graph., 6(2):181-189.
[16]Hoppe, H., DeRose, T., Duchamp, T., et al., 1993. Mesh optimization. Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques, p.19-26.
[17]Hormann, K., Greiner, G., 2000a. MIPS: an efficient global parameterization method. Proc. Curve and Surface, p.153-162.
[18]Hormann, K., Greiner, G., 2000b. Quadrilateral remeshing. Proc. Vision Modeling and Visualization, p.153-162.
[19]Hormann, K., Greiner, G., Campagna, S., 1999. Hierarchical parameterization of triangulated surfaces. Proc. of Vision, Modeling and Visualization, p.219-226.
[20]Hormann, K., Labsik, U., Greiner, G., 2001. Remeshing triangulated surfaces with optimal parameterizations. Comput.-Aid. Des., 33(11):779-788.
[21]Hormann, K., Lévy, B., Sheffer, A., 2007. Mesh parameterization: theory and practice. Proc. SIGGRAPH, p.1-122.
[22]Horn, R., Johnson, C., 1990. Norms for vectors and matrices. In: Matrix Analysis. Cambridge University Press, England.
[23]Jacobson, A., Baran, I., Kavan, L., et al., 2012. Fast automatic skinning transformations. ACM Trans. Graph., 31(4), Article 77.
[24]Jin, M., Kim, J., Luo, F., et al., 2008. Discrete surface Ricci flow. IEEE Trans. Visual. Comput. Graph., 14(5):1030-1043.
[25]Kharevych, L., Springborn, B., Schröder, P., 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph., 25(2):412-438.
[26]Lawson, L., 1977. Software for c1 surface interpolation. In: Mathematical Software III. Academic Press, New York.
[27]Lee, Y., Kim, H., Lee, S., 2002. Mesh parameterization with a virtual boundary. Comput. Graph., 26(5):677-686.
[28]Levi, Z., Zorin, D., 2014. Strict minimizers for geometric optimization. ACM Trans. Graph., 33(6), Article 185.
[29]Lévy, B., Petitjean, S., Ray, N., et al., 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph., 21(3):362-371.
[30]Lipman, Y., 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph., 31(4), Article 108.
[31]Liu, L., Zhang, L., Xu, Y., et al., 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum, 27(5):1495-1504.
[32]Mullen, P., Tong, Y., Alliez, P., et al., 2008. Spectral conformal parameterization. Comput. Graph. Forum, 27(5):1487-1494.
[33]Pinkall, U., Polthier, K., 1993. Computing discrete minimal surface and their conjugates. Exp. Math., 2(1):15-36.
[34]Sander, P., Snyder, J., Gortler, S., et al., 2001. Texture mapping progressive meshes. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.409-416.
[35]Saucan, E., Appleboim, E., Barak-Shimron, E., et al., 2008. Local versus global in quasiconformal mapping for medical imaging. J. Math. Imag. Vis., 32(3):293-311.
[36]Sheffer, A., de Sturler, E., 2001. Parameterization of faceted surfaces for meshing using angle-based flattening. Eng. Comput., 17(3):326-337.
[37]Sheffer, A., Lévy, B., Mogilnitsky, M., et al., 2005. ABF++: fast and robust angle based flattening. ACM Trans. Graph., 24(2):311-330.
[38]Sheffer, A., Praun, E., Rose, K., 2007. Mesh parameterization methods and their applications. Comput. Graph. Vis., 2(2):105-171.
[39]Sorkine, O., Alexa, M., 2007. As-rigid-as-possible surface modeling. Proc. Eurographics Symp. on Geometry Processing, p.109-116.
[40]Tutte, W.T., 1963. How to draw a graph. Proc. London Math. Soc., 13(3):743-768..
[41]Weber, O., Zorin, D., 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM Trans. Graph., 33(4), Article 75.
[42]Weber, O., Myles, A., Zorin, D., 2012. Computing extremal quasiconformal maps. Comput. Graph. Forum, 31(5):1679-1689.
[43]Yoshizawa, S., Belyaev, A., Seidel, H., 2004. A fast and simple stretch-minimizing mesh parameterization. Proc. Shape Modeling Applications, p.200-208.
[44]Zayer, R., Lévy, B., Seidel, H., 2007. Linear angle based parameterization. Proc. 5th Eurographics Symp. on Geometry Processing, p.135-141.
[45]Zhang, L., Liu, L., Gotsman, C., et al., 2010. Mesh reconstruction by meshless denoising and parameterization. Comput. Graph., 34(3):198-208.
[46]Zhao, X., Su, Z., Gu, X., et al., 2013. Area-preservation mapping using optimal mass transport. IEEE Trans. Visual. Comput. Graph., 19(12):2838-2847.
[47]Zigelman, G., Kimmel, R., Kiryati, N., 2002. Texture mapping using surface flattening via multidimensional scaling. IEEE Trans. Visual. Comput. Graph., 8(2):198-207.
Open peer comments: Debate/Discuss/Question/Opinion
<1>