CLC number: TN965
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-09-25
Cited: 0
Clicked: 6652
Xiao-wei Liu, Rui Weng, Hai Li, Hai-feng Zhang. Ball-disk rotor gyroscope adaptive quick-start technique[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1430-1436.
@article{title="Ball-disk rotor gyroscope adaptive quick-start technique",
author="Xiao-wei Liu, Rui Weng, Hai Li, Hai-feng Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="9",
pages="1430-1436",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1600035"
}
%0 Journal Article
%T Ball-disk rotor gyroscope adaptive quick-start technique
%A Xiao-wei Liu
%A Rui Weng
%A Hai Li
%A Hai-feng Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 9
%P 1430-1436
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1600035
TY - JOUR
T1 - Ball-disk rotor gyroscope adaptive quick-start technique
A1 - Xiao-wei Liu
A1 - Rui Weng
A1 - Hai Li
A1 - Hai-feng Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 9
SP - 1430
EP - 1436
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1600035
Abstract: Rotating speed is a critical parameter affecting the performance of rotor gyroscopes. rotor gyroscopes must operate at the rated rotating speed. To shorten the start time of the ball-disk rotor gyroscope, this paper presents a new design of the drive system for a ball-disk rotor gyroscope. The drive system is monitored by a microcontroller. First, the microcontroller generates a sine pulse width modulation signal to drive the permanent magnet rotor. Second, the position of the rotor is detected according to the back electromotive force in the non-energized coil. Third, a piecewise closed-loop control algorithm is implemented to keep the angular acceleration of the rotor within the safe range automatically during the acceleration process and when running at a constant speed. This control algorithm can avoid rotor stalling due to loss of steps. Experimental result shows that with the help of adaptive quick-start technique, the start time of the device can be shortened by up to 36.6%.
[1]Barbour, N., Schmidt, G., 2001. Inertial sensor technology trends. IEEE. Sens. J., 1(2):332-339.
[2]Damrongsak, B., Kraft, M., 2005. A micromachined electrostatically suspended gyroscope with digital force feedback. IEEE Sensors, p.401-404.
[3]Damrongsak, B., Kraft, M., Rajgopal, S., et al., 2008. Design and fabrication of a micromachined electrostatically suspended gyroscope. J. Mech. Eng., 222(1):53-63.
[4]Dauwalter, C.R., Ha, J.C., 2005. Magnetically suspended MEMS spinning wheel gyro. IEEE Aerosp. Electron. Syst. Mag., 20(2):21-26.
[5]Deng, S., Li, X.L., Wang, J.G., et al., 2011. Frictional torque characteristic of angular contact ball bearings. J. Mech. Eng., 47(5):114-120.
[6]Geen, J.A., 2005. Very low cost gyroscopes. IEEE Sensors, p.537-540.
[7]Han, F.T., Liu, Y.F., Wang, L., et al., 2012. Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor. J. Micromech. Microeng., 22(10):1-9.
[8]Jin, L.C., Zhang, H.W., Zhong, Z.Y., 2011. Design of a LC-tuned magnetically suspended rotating gyroscope. J. Appl. Phys., 109:07E525.
[9]Kraft, M., Damrongsak, B., 2010. Micromachined gyroscopes based on a rotating mechanically unconstrained proof mass. IEEE Sensors, p.23-28.
[10]Qin, K., Zhang, W.P., Chen, W.Y., et al., 2011. Simulation of electrostatically suspended micro-gyroscope based on LabVIEW. 3rd Int. Conf. on Measuring Technology and Mechatronics Automation, p.249-252.
[11]Shao, D.D., Chen, W.Y., Zhang, W.P., et al., 2011. Virtual prototyping simulation for electrostatically suspended rotor micro gyroscope initial levitation. 6th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, p.9-12.
[12]Shao, S.Y., Huang, X.G., Liu, W., et al., 2006. Design of drive circuit for rotation of micromachined gyroscope with magnetic-suspension rotor. Transd. Microsyst. Technol., 2:83-85 (in Chinese).
[13]Shearwood, C., Yates, R.B., 1997. Development of an electro- magnetic micro-generator. Electron. Lett., 33(22): 1883-1884.
[14]Shearwood, C., Ho, K.Y., Williams, C.B., et al., 2000. Development of a levitated micromotor for application as a gyroscope. Sensor Actuat. A, 83(1-3):85-92.
[15]Srinu, D., Manmadha, K.B., 2014. A single phase to three phase PFC half-bridge converter using BLDC drive with SPWM technique. Int. J. Eng. Res. Appl., 4(7):31-38.
[16]Wang, C.C., Yao, Y.D., Liu, C.S., et al., 2006. Micro-magnetic suspension motor design for miniature optical drive. Jpn. J. Appl. Phys., 45(7):5801-5803.
[17]Wu, X.S., Chen, W.Y., Zhao, X.L., et al., 2006a. Development of a micromachined rotating gyroscope with electromagnetically levitated rotor. J. Micromech. Microeng., 16(10):1993-1999.
[18]Wu, X.S., Chen, W.Y., Zhao, X.L., et al., 2006b. Micromachined rotating gyroscope with electromagnetically levitated rotor. Electron. Lett., 42(16):912-913.
[19]Xiao, Q.J., Chen, W.Y., Li, S.Y., et al., 2010. Modeling and simulation of levitation control for a micromachined electrostatically suspended gyroscope. Microsyst. Technol., 16:357-366.
[20]Xu, J.B., Wu, Z.Z., Wu, X., et al., 2014. An improved phase disposition SPWM strategy for cascaded multilevel inverter. Math. Probl. Eng., Article 731574.
[21]Xue, G., Li, T., Zhang, H.W., 2009a. Research status and development of magnetically suspended rotorgyroscopes. Int. Conf. on Applied Superconductivity and Electromagnetic Devices, p.373-376.
[22]Xue, G., Zhang, X.T., Zhang, H.W., 2009b. Electromagnetic design of a magnetically suspended gyroscope prototype. IEEE Int. Conf. on Applied Superconductivity and Electromagnetic Devices, p.369-372.
Open peer comments: Debate/Discuss/Question/Opinion
<1>