Full Text:   <2419>

Summary:  <2096>

CLC number: TH137; TP13

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-10-29

Cited: 0

Clicked: 7737

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiong-bin Peng

http://orcid.org/0000-0002-8120-4990

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.10 P.1624-1634

http://doi.org/10.1631/FITEE.1601104


Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope


Author(s):  Xiong-bin Peng, Guo-fang Gong, Hua-yong Yang, Hai-yang Lou, Wei-qiang Wu, Tong Liu

Affiliation(s):  State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zju_pxb@163.com

Key Words:  Large-scale reflecting telescope, Quantitative feedback theory, Electro-hydraulic position control system, Micron-level position control capability, System identification, Robust stability



Abstract: 
For the primary mirror of a large-scale telescope, an electro-hydraulic position control system (EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE