Full Text:   <2509>

Summary:  <1794>

CLC number: TP391.9

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-11-20

Cited: 0

Clicked: 7930

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chao Guo

http://orcid.org/0000-0003-2610-9613

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.11 P.1843-1853

http://doi.org/10.1631/FITEE.1601283


A virtual 3D interactive painting method for Chinese calligraphy and painting based on real-time force feedback technology


Author(s):  Chao Guo, Zeng-xuan Hou, You-zhi Shi, Jun Xu, Dan-dan Yu

Affiliation(s):  School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Corresponding email(s):   358826947@qq.com, hou@dlut.edu.cn, 43972049@qq.com, 1017184024@qq.com, 642484580@qq.com

Key Words:  3D brush model, 3D brushstroke, 3D interactive painting, Real-time force feedback technology



Abstract: 
A novel 3D interactive painting method for Chinese calligraphy and painting based on force feedback technology is proposed. The relationship between the force exerted on the brush and the resulting brush deformation is analyzed and a spring-mass model is used to build a model of the 3D Chinese brush. The 2D brush footprint between the brush and the plane of the paper or object is calculated according to the deformation of the 3D brush when force is exerted on the 3D brush. Then the 3D brush footprint is obtained by projecting the 2D brush footprint onto the surface of the 3D object in real time, and a complete 3D brushstroke is obtained by superimposing 3D brush footprints along the painting direction. The proposed method has been successfully applied in a virtual 3D interactive drawing system based on force feedback technology. In this system, users can paint 3D brushstrokes in real time with a Phantom Desktop haptic device, which can effectively serve as a virtual reality interface to the simulated painting environment for users.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE