CLC number: TP391.9
On-line Access: 2018-01-12
Received: 2016-05-24
Revision Accepted: 2017-01-23
Crosschecked: 2017-11-20
Cited: 0
Clicked: 7101
Chao Guo, Zeng-xuan Hou, You-zhi Shi, Jun Xu, Dan-dan Yu. A virtual 3D interactive painting method for Chinese calligraphy and painting based on real-time force feedback technology[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1843-1853.
@article{title="A virtual 3D interactive painting method for Chinese calligraphy and painting based on real-time force feedback technology",
author="Chao Guo, Zeng-xuan Hou, You-zhi Shi, Jun Xu, Dan-dan Yu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1843-1853",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601283"
}
%0 Journal Article
%T A virtual 3D interactive painting method for Chinese calligraphy and painting based on real-time force feedback technology
%A Chao Guo
%A Zeng-xuan Hou
%A You-zhi Shi
%A Jun Xu
%A Dan-dan Yu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1843-1853
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601283
TY - JOUR
T1 - A virtual 3D interactive painting method for Chinese calligraphy and painting based on real-time force feedback technology
A1 - Chao Guo
A1 - Zeng-xuan Hou
A1 - You-zhi Shi
A1 - Jun Xu
A1 - Dan-dan Yu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1843
EP - 1853
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601283
Abstract: A novel 3D interactive painting method for Chinese calligraphy and painting based on force feedback technology is proposed. The relationship between the force exerted on the brush and the resulting brush deformation is analyzed and a spring-mass model is used to build a model of the 3D Chinese brush. The 2D brush footprint between the brush and the plane of the paper or object is calculated according to the deformation of the 3D brush when force is exerted on the 3D brush. Then the 3D brush footprint is obtained by projecting the 2D brush footprint onto the surface of the 3D object in real time, and a complete 3D brushstroke is obtained by superimposing 3D brush footprints along the painting direction. The proposed method has been successfully applied in a virtual 3D interactive drawing system based on force feedback technology. In this system, users can paint 3D brushstrokes in real time with a Phantom Desktop haptic device, which can effectively serve as a virtual reality interface to the simulated painting environment for users.
[1]Adams, B., Wicke, M., Dutré, P., et al., 2004. Interactive 3D painting on point-sampled objects. Proc. 1st Eurographics Conf. on Point-Based Graphics, p.57-66.
[2]Agrawala, M., Beers, A.C., Levoy, M., 1995. 3D painting on scanned surfaces. Proc. Symp. on Interactive 3D Graphics, p.145-150.
[3]Baxter, W., Wendt, J., Lin, M.C., 2004. IMPaSTo: a realistic, interactive model for paint. Proc. 3rd Int. Symp. on Non-photorealistic Animation and Rendering, p.45-56, 148.
[4]Baxter, W.V., Lin, M.C., 2004. A versatile interactive 3D brush model. Proc. 12th Pacific Conf. on Computer Graphics and Applications, p.319-328.
[5]Chen, Z.L., Kim, B., Ito, D., et al., 2015. Wetbrush: GPU- based 3D painting simulation at the bristle level. ACM Trans. Graph., 34(6), Article 200.
[6]Chu, N.S.H., Tai, C.L., 2002. An efficient brush model for physically-based 3D painting. Proc. 10th Pacific Conf. on Computer Graphics and Applications, p.413-421.
[7]Chu, N.S.H., Tai, C.L., 2004. Real-time painting with an expressive virtual Chinese brush. IEEE Comput. Graph. Appl., 24(5):76-85.
[8]Chu, N.S.H., Tai, C.L., 2005. MoXi: real-time ink dispersion in absorbent paper. ACM Trans. Graph., 24(3):504-511.
[9]Foskey, M., Otaduy, M.A., Lin, M.C., 2002. ArtNova: touch-enabled 3D model design. Proc. IEEE Virtual Reality, p.119-126.
[10]Fu, C.W., Xia, J.Z., He, Y., 2010. LayerPaint: a multi-layer interactive 3D painting interface. Proc. SIGCHI Conf. on Human Factors in Computing Systems, p.811-820.
[11]Fu, Y.X., Chen, Y.H., 2008. Haptic 3D mesh painting based on dynamic subdivision. Comput. Aid. Des. Appl., 5(1-4): 131-141.
[12]Gregory, A.D., Ehmann, S.A., Lin, M.C., 2000. inTouch: interactive multiresolution modeling and 3D painting with a haptic interface. Proc. IEEE Virtual Reality, p.45-52.
[13]Guo, C., Hou, Z.X., Yang, G.Q., et al., 2015. The simulation of the brushstroke based on force feedback technology. Math. Prob. Eng., Article 164821.
[14]Hanrahan, P., Haeberli, P., 1990. Direct WYSIWYG painting and texturing on 3D shapes. Proc. 17th Annual Conf. on Computer Graphics and Interactive Techniques, p.215-223.
[15]Hou, Z.X., Guo, C., Chen, G.Z., et al., 2015. The methods of the pigment mixing and color storage in the virtual painting. J. Inform. Comput. Sci., 12(18):6853-6861.
[16]Igarashi, T., Cosgrove, D., 2001. Adaptive unwrapping for interactive texture painting. Proc. Symp. on Interactive 3D Graphics, p.209-216.
[17]Johnson, D., Thompson, T.V., Kaplan, M., et al., 1999. Painting textures with a haptic interface. Proc. IEEE Virtual Reality, p.282-285.
[18]Kim, L., Sukhatme, G.S., Desbrun, M., 2003. Haptic editing of decoration and material properties. Proc. 11th Symp. on Haptic Interfaces for Virtual Environment and Teleoperator Systems, p.213-220.
[19]Kim, L., Sukhatme, G.S., Desbrun, M., 2004. A haptic- rendering technique based on hybrid surface representation. IEEE Comput. Graph. Appl., 24(2):66-75.
[20]Larsson, T., Källberg, L., 2013. Fast and robust approximation of smallest enclosing balls in arbitrary dimensions. Comput. Graph. Forum, 32(5):93-101.
[21]Lin, M.C., Baxter, W., Foskey, M., et al., 2002. Haptic interaction for creative processes with simulated media. IEEE Int. Conf. on Robotics and Automation, p.598-604.
[22]Otsuki, M., Tsukadaira, M., Kimura, A., et al., 2009. Development of brush device facilitating painting operation in 2D/3D space. Proc. ICROS-SICE Int. Joint Conf., p.4323-4326
[23]Otsuki, M., Sugihara, K., Kimura, A., et al., 2010. MAI painting brush: an interactive device that realizes the feeling of real painting. Proc. 23rd Annual ACM Symp. on User Interface Software and Technology, p.97-100.
Open peer comments: Debate/Discuss/Question/Opinion
<1>