Full Text:   <2381>

Summary:  <1691>

CLC number: TP311

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-04-15

Cited: 0

Clicked: 7098

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Rasha Shoitan

http://orcid.org/0000-0003-0372-4293

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.4 P.503-512

http://doi.org/10.1631/FITEE.1601588


Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix


Author(s):  Rasha Shoitan, Zaki Nossair, I. I. Ibrahim, Ahmed Tobal

Affiliation(s):  Computer and Systems Department, Electronic Research Institute, Giza 12622, Egypt; more

Corresponding email(s):   Rasha.shoitan@eri.sci.eg

Key Words:  Block compressive sensing, Sparsity adaptive matching pursuit, Greedy algorithm, Wilkinson matrix


Rasha Shoitan, Zaki Nossair, I. I. Ibrahim, Ahmed Tobal. Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(4): 503-512.

@article{title="Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix",
author="Rasha Shoitan, Zaki Nossair, I. I. Ibrahim, Ahmed Tobal",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="4",
pages="503-512",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601588"
}

%0 Journal Article
%T Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix
%A Rasha Shoitan
%A Zaki Nossair
%A I. I. Ibrahim
%A Ahmed Tobal
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 4
%P 503-512
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601588

TY - JOUR
T1 - Improving the reconstruction efficiency of sparsity adaptive matching pursuit based on the Wilkinson matrix
A1 - Rasha Shoitan
A1 - Zaki Nossair
A1 - I. I. Ibrahim
A1 - Ahmed Tobal
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 4
SP - 503
EP - 512
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601588


Abstract: 
sparsity adaptive matching pursuit (SAMP) is a greedy reconstruction algorithm for compressive sensing signals. SAMP reconstructs signals without prior information of sparsity and presents better reconstruction performance for noisy signals compared to other greedy algorithms. However, SAMP still suffers from relatively poor reconstruction quality especially at high compression ratios. In the proposed research, the wilkinson matrix is used as a sensing matrix to improve the reconstruction quality and to increase the compression ratio of the SAMP technique. Furthermore, the idea of block compressive sensing (BCS) is combined with the SAMP technique to improve the performance of the SAMP technique. Numerous simulations have been conducted to evaluate the proposed BCS-SAMP technique and to compare its results with those of several compressed sensing techniques. Simulation results show that the proposed BCS-SAMP technique improves the reconstruction quality by up to six decibels (dB) relative to the conventional SAMP technique. In addition, the reconstruction quality of the proposed BCS-SAMP is highly comparable to that of iterative techniques. Moreover, the computation time of the proposed BCS-SAMP is less than that of the iterative techniques, especially at lower measurement fractions.

基于Wilkinson矩阵提升稀疏自适应匹配追踪重构效率

摘要:稀疏自适应匹配追踪(sparsity adaptive matching pursuit, SAMP)是压缩感知信号的一种贪婪重构算法。SAMP可以在没有稀疏先验信息的情况下重构信号,与其他贪婪算法相比对噪声信号具有更好的重构性能。但SAMP在重建质量方面,特别是在高压缩比时,仍有不足。采用Wilkinson矩阵作为感测矩阵,以提高重建质量并增加SAMP技术的压缩比。将块压缩感知(block compressive sensing, BCS)思想与SAMP技术结合,以提高SAMP技术性能。通过大量试验对所提出BCS-SAMP技术进行评估,并将其结果与其他几种压缩传感技术结果作比较。结果表明,BCS-SAMP技术与传统SAMP技术相比,重建质量可提升6分贝(dB)。BCS-SAMP技术在重建质量方面与迭代技术相比大致接近,该技术计算时间小于迭代技术计算时间,这一优势在测量分数较低时更为明显。

关键词:块压缩传感;稀疏自适应匹配追踪;贪婪算法;Wilkinson矩阵

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Blumensath T, Davies ME, 2008. Gradient pursuits. IEEE Trans Signal Process, 56(6):2370-2382.

[2]Cai Z, Zhao H, Jia M, et al., 2013. An improved Hadamard measurement matrix based on Walsh code for compressive sensing. 9th Int Conf on Information, Communications, and Signal Processing, p.1-4.

[3]Candès EJ, 2006. Compressive sampling. Proc Int Congress of Mathematicians, p.1433-1452.

[4]Candès EJ, Wakin MB, 2008. An introduction to compressive sampling. IEEE Signal Process Mag, 25(2):21-30.

[5]Candès EJ, Romberg JK, Tao T, 2006. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math, 59(8):1207-1223.

[6]Do TT, Gan L, Nguyen N, et al., 2008. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. 42nd Asilomar Conf on Signals, Systems, and Computers, p.581-587.

[7]Do TT, Gan L, Nguyen NH, et al., 2012. Fast and efficient compressive sensing using structurally random matrices. IEEE Trans Signal Process, 60(1):139-154.

[8]Donoho DL, 2006. Compressed sensing. IEEE Trans Inform Theory, 52(4):1289-1306.

[9]Donoho DL, Tsaig Y, Drori I, et al., 2012. Sparse solution of under-determined systems of linear equations by stage-wise orthogonal matching pursuit. IEEE Trans Inform Theory, 58(2):1094-1121.

[10]Gan L, 2007. Block compressed sensing of natural images. 15th Int Conf on Digital Signal Processing, p.403-406.

[11]Gentle JE, 2007. Matrix Algebra: Theory, Computations, and Applications in Statistics. Springer Science & Business Media, New York, USA.

[12]Grgić S, Grgić M, Mrak M, 2004. Reliability of objective picture quality measures. J Electr Eng, 55(1-2):3-10.

[13]Ma CH, Xu CY, Shen L, et al., 2011. A fast sparsity adaptive matching pursuit algorithm for compressed sensing. In: Lee G (Ed.), Advances in Automation and Robotics, Vol. 1. Springer Berlin Heidelberg, p.363-368.

[14]Needell D, Tropp JA, 2009. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal, 26(3):301-321.

[15]Needell D, Vershynin R, 2010. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Topics Signal Process, 4(2):310-316.

[16]Needell D, Tropp J, Vershynin R, 2008. Greedy signal recovery review. 42nd Asilomar Conf on Signals, Systems, and Computers, p.1048-1050.

[17]Pawar K, Egan G, Zhang J, 2015. Multichannel compressive sensing MRI using noiselet encoding. PLoS ONE, 10(5):e0126386.

[18]Qaisar S, Bilal RM, Iqbal W, et al., 2013. Compressive sensing: from theory to applications, a survey. J Commun Netw, 15(5):443-456.

[19]Sermwuthisarn P, Auethavekiat S, Patanavijit V, 2009. A fast image recovery using compressive sensing technique with block based orthogonal matching pursuit. Int Symp on Intelligent Signal Processing and Communication Systems, p.212-215.

[20]Shalaby WA, Saad W, Shokair M, et al., 2016. An efficient recovery algorithm using complex to real transformation of compressed sensing. 33rd National Radio Science Conf, p.122-131.

[21]Shoitan R, Nossair Z, Isamil I, et al., 2017. Hybrid wavelet measurement matrices for improving compressive imaging. Signal Image Video Process, 11(1):65-72.

[22]Stanković S, Orović I, Sejdić E, 2012. Compressive sensing. In: Multimedia Signals and Systems. Springer, Boston, USA, p.285-348.

[23]Tiwari V, Bansod P, Kumar A, 2015. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images. Cogent Eng, 2(1):1017244.

[24]Tropp JA, Gilbert AC, 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory, 53(12):4655-4666.

[25]Zhang Z, Xu Y, Yang J, et al., 2015. A survey of sparse representation: algorithms and applications. IEEE Access, 3:490-530.

[26]Zhao R, Ren X, Han X, et al., 2012. An improved sparsity adaptive matching pursuit algorithm for compressive sensing based on regularized backtracking. J Electron (China), 29(6):580-584.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE