CLC number: TN929.5
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-06-05
Cited: 1
Clicked: 11214
Zhao-yang Zhang, Wei Lyu. Interference coordination in full-duplex HetNet with large-scale antenna arrays[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(6): 830-840.
@article{title="Interference coordination in full-duplex HetNet with large-scale antenna arrays",
author="Zhao-yang Zhang, Wei Lyu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="6",
pages="830-840",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700047"
}
%0 Journal Article
%T Interference coordination in full-duplex HetNet with large-scale antenna arrays
%A Zhao-yang Zhang
%A Wei Lyu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 6
%P 830-840
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700047
TY - JOUR
T1 - Interference coordination in full-duplex HetNet with large-scale antenna arrays
A1 - Zhao-yang Zhang
A1 - Wei Lyu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 6
SP - 830
EP - 840
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700047
Abstract: Massive multiple-input multiple-output (MIMO), small cell, and full-duplex are promising techniques for future 5G communication systems, where interference has become the most challenging issue to be addressed. In this paper, we provide an interference coordination framework for a two-tier heterogeneous network (HetNet) that consists of a massive-MIMO enabled macro-cell base station (MBS) and a number of full-duplex small-cell base stations (SBSs). To suppress the interferences and maximize the throughput, the full-duplex mode of each SBS at the wireless backhaul link (i.e., in-band or out-of-band), which has a different impact on the interference pattern, should be carefully selected. To address this problem, we propose two centralized algorithms, a genetic algorithm (GEA) and a greedy algorithm (GRA). To sufficiently reduce the computational overhead of the MBS, a distributed graph coloring algorithm (DGCA) based on price is further proposed. Numerical results demonstrate that the proposed algorithms significantly improve the system throughput.
[1]3GPP, 2012a. Evolved universal terrestrial radio access (E-UTRA); LTE physical layer; general description. Technical Specification No. 36.201 (v11.1.0), 3rd Generation Partnership Project.
[2]3GPP, 2012b. Evolved universal terrestrial radio access (E-UTRA); further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation. Technical Report No. 36.828 (v11.0.0), 3rd Generation Partnership Project.
[3]Bharadia, D., Katti, S., 2016. Full-duplex radios. In: Vannithamby, R., Talwar, S. (Eds.), Towards 5G: Applications, Requirements and Candidate Technologies. John Wiley & Sons, p.365-394.
[4]Boccardi, F., Heath, R., Lozano, A., et al., 2014. Five disruptive technology directions for 5G. IEEE Commun. Mag., 52(2):74-80.
[5]Brélaz, D., 1979. New methods to color the vertices of a graph. Commun. ACM, 22(4):251-256.
[6]Choi, J.I., Jain, M., Srinivasan, K., et al., 2010. Achieving single channel, full duplex wireless communication. 16th Annual Int. Conf. on Mobile Computing and Networking, p.1-12.
[7]Goyal, S., Liu, P., Hua, S., et al., 2013. Analyzing a full-duplex cellular system. 47th Annual Conf. on Information Sciences and Systems, p.1-6.
[8]Goyal, S., Liu, P., Panwar, S., et al., 2014. Improving small cell capacity with common-carrier full duplex radios. IEEE Int. Conf. on Communications, p.4987-4993.
[9]Hosseini, K., Hoydis, J., ten Brink, S., et al., 2013. Massive MIMO and small cells: how to densify heterogeneous networks. IEEE Int. Conf. on Communications, p.5442-5447.
[10]Hoydis, J., Kobayashi, M., Debbah, M., 2011. Green small-cell networks. IEEE Veh. Technol. Mag., 6(1):37-43.
[11]Hoydis, J., Hosseini, K., ten Brink, S., et al., 2013. Making smart use of excess antennas: massive MIMO, small cells, and TDD. Bell Labs Techn. J., 18(2):5-21.
[12]Jain, M., Choi, J.I., Kim, T., et al., 2011. Practical, real-time, full duplex wireless. 17th Annual Int. Conf. on Mobile Computing and Networking, p.301-312.
[13]Kim, S., Cho, I., 2013. Graph-based dynamic channel assignment scheme for femtocell networks. IEEE Commun. Lett., 17(9):1718-1721.
[14]Larsson, E., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2):186-195.
[15]Li, B., Zhu, D., Liang, P., 2015. Small cell in-band wireless backhaul in massive MIMO systems: a cooperation of next-generation techniques. IEEE Trans. Wirel. Commun., 14(12):7057-7069.
[16]Liu, G., Yu, F.R., Ji, H., et al., 2015. In-band full-duplex relaying: a survey, research issues and challenges. IEEE Commun. Surv. Tutor., 17(2):500-524.
[17]Marzetta, T.L., 2010. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun., 9(11):3590-3600.
[18]Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag., 30(1):40-60.
[19]Sabharwal, A., Schniter, P., Guo, D., et al., 2014. In-band full-duplex wireless: challenges and opportunities. IEEE J. Sel. Areas Commun., 32(9):1637-1652.
[20]Tabassum, H., Sakr, A.H., Hossain, E., 2016. Analysis of massive MIMO-enabled downlink wireless backhauling for full-duplex small cells. IEEE Trans. Commun., 64(6):2354-2369.
[21]Thilina, K.M., Tabassum, H., Hossain, E., et al., 2015. Medium access control design for full duplex wireless systems: challenges and approaches. IEEECommun. Mag. , 53(5):112-120.
Open peer comments: Debate/Discuss/Question/Opinion
<1>