Full Text:   <7858>

Summary:  <1685>

CLC number: TP242

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-09-27

Cited: 0

Clicked: 6583

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chun-lin Zhou

http://orcid.org/0000-0001-6939-9732

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.9 P.1295-1304

http://doi.org/10.1631/FITEE.1700294


Dynamic modeling of a wave glider


Author(s):  Chun-lin Zhou, Bo-xing Wang, Hong-xiang Zhou, Jing-lan Li, Rong Xiong

Affiliation(s):  College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   c_zhou@zju.edu.cn, rxiong@zju.edu.cn

Key Words:  Wave-propelled vehicle, Dynamic modeling, Sea surface vehicle, Wave glider


Chun-lin Zhou, Bo-xing Wang, Hong-xiang Zhou, Jing-lan Li, Rong Xiong. Dynamic modeling of a wave glider[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1295-1304.

@article{title="Dynamic modeling of a wave glider",
author="Chun-lin Zhou, Bo-xing Wang, Hong-xiang Zhou, Jing-lan Li, Rong Xiong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="9",
pages="1295-1304",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700294"
}

%0 Journal Article
%T Dynamic modeling of a wave glider
%A Chun-lin Zhou
%A Bo-xing Wang
%A Hong-xiang Zhou
%A Jing-lan Li
%A Rong Xiong
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 9
%P 1295-1304
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700294

TY - JOUR
T1 - Dynamic modeling of a wave glider
A1 - Chun-lin Zhou
A1 - Bo-xing Wang
A1 - Hong-xiang Zhou
A1 - Jing-lan Li
A1 - Rong Xiong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 9
SP - 1295
EP - 1304
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700294


Abstract: 
We propose a method to establish a dynamic model for a wave glider, a wave-propelled sea surface vehicle that can make use of wave energy to obtain thrust. The vehicle, composed of a surface float and a submerged glider in sea water, is regarded as a two-particle system. Kane’s equations are used to establish the dynamic model. To verify the model, the design of a testing prototype is proposed and pool trials are conducted. The speeds of the vehicle under different sea conditions can be computed using the model, which is verified by pool trials. The optimal structure parameters useful for vehicle designs can also be obtained from the model. We illustrate how to build an analytical dynamics model for the wave glider, which is a crucial basis for the vehicle’s motion control. The dynamics model also provides foundations for an off-line simulation of vehicle performance and the optimization of its mechanical designs.

水波滑翔器动力学建模

概要:水波滑翔器是一种能够利用海面波浪起伏获得前进动力的海面移动装置,本文研究一种该装置的动力学建模方法。水波滑翔器由水面浮子和水下滑翔装置两部分构成,可视为一个双质点系统。本文采用Kane方程建立该系统的动力学模型,并提出一种水池试验装置来测试模型的有效性,得到了滑翔器在不同海况条件下的速度性能。同时,该模型还可用于优化滑翔器的结构参数。本文提出的水波滑翔器动力学模型具有解析形式,是滑翔器运动控制得以实现的前提,也为滑翔器离线运动规划和装置结构优化提供了重要基础。

关键词:波浪能驱动;动力学建模;海面移动载体;水波滑翔器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Caiti, A., Calabró, V., Grammatico, S., et al., 2011. Lagrangian modeling of the underwater wave glider. MTS/IEEE Oceans, p.1-6.

[2]Cameron, S., 1994. Obstacle avoidance and path planning. Ind. Robot, 21(5):9-14.

[3]Carragher, P., Hine, G., Legh-Smith, P., et al., 2013. A new platform for offshore exploration and production. Oilfield Rev., 25(4):40-50.%

[4]Cong, B., Cui, H.L., Liu, Z., 2009. Modeling and virtual simulation in random ocean waves. J. Xi’san Technol. Univ., 29(5):475-478 (in Chinese).

[5]Daugherty, R.L., Franzini, J.B., 1997. Fluid Mechanics with Engineering Applications. McGraw-Hill, New York, p.192-198.

[6]Hine, R., Willcox, S., Hine, G., et al., 2009. The wave glider: a wave-powered autonomous marine vehicle. MTS/IEEE Oceans, p.1-6.

[7]Kraus, N., Bingham, B., 2011. Estimation of wave glider dynamics for precise positioning. MTS/IEEE Oceans, p.1-9.

[8]Liu, J.Y., Li, Y.H., Yi, H., et al., 2011. The modeling and analysis of wave powering surface vehicle. MTS/IEEE Oceans, p.1-6.

[9]Lolla, T., Ueckermann, M.P., Yiv git, K., et al., 2012. Path planning in time dependent flow fields using level set methods. IEEE Int. Conf. on Robotics and Automation, p.166-173.

[10]Ma, X.F., Xu, X.R., Li, D.G., 1988. A recursive algorithm of robot dynamics based on the Kane’ss dynamical equation. J. Beijing Univ. Iron Steel Technol., 10(2):198-208 (in Chinese).

[11]Manley, J., Hine, G., 2016. Unmanned surface vessels (USVs) as tow platforms: wave glider experience and results. MTS/IEEE Oceans, p.1-5

[12]Manley, J., Willcox, S., 2010. The wave glider: a new concept for deploying ocean instrumentation. IEEE Instrum. Meas. Mag., 13(6):8-13.

[13]Ngo, P., Al-Sabban, W., Thomas, J., et al., 2013. An analysis of regression models for predicting the speed of a wave glider autonomous surface vehicle. Proc. Australasian Conf. on Robotics and Automation, p.1-10.

[14]Ngo, P., Das, J., Ogle, J., et al., 2014. Predicting the speed of a wave glider autonomous surface vehicle from wave model data. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2250-2256.

[15]Smith, R.N., Das, J., Hine, G., et al., 2011. Predicting wave glider speed from environmental measurements. MTS/IEEE Oceans, p.1-8.

[16]Song, H., Zhang, J.H., Yang, P., et al., 2016. Modeling of a dynamic dual-input dual-output fast steering mirror linebreak newpage system. Front. Inform. Technol. Electron. Eng., in press.

[17]Tarn, T.J., Shoults, G.A., Yang, S.P., 1996. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’ss method. Auton. Robots, 3(2-3):269-283.

[18]Wiggins, S., Manley, J., Brager, E., et al., 2010. Monitoring marine mammal acoustics using wave glider. MTS/IEEE Oceans, p.1-4.

[19]Zhang, Y.W., Kieft, B., Rueda, C., et al., 2016. Autonomous front tracking by a wave glider. MTS/IEEE Oceans, p.1-4.

[20]Zhou, C.L., Low, K.H., 2014. On-line optimization of biomimetic undulatory swimming by an experiment-based approach. J. Bion. Eng., 11(2):213-225.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE