Full Text:   <2201>

Summary:  <1713>

CLC number: TP73

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-09-25

Cited: 0

Clicked: 6343

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi-hua Lu

http://orcid.org/0000-0003-3123-4961

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.9 P.1151-1165

http://doi.org/10.1631/FITEE.1800214


Performance analysis of two EM-based measurement bias estimation processes for tracking systems


Author(s):  Zhi-hua Lu, Meng-yao Zhu, Qing-wei Ye, Yu Zhou

Affiliation(s):  College of Information Science and Engineering, Ningbo University, Ningbo 315211, China; more

Corresponding email(s):   luzhihua@nbu.edu.cn, zhumengyao@shu.edu.cn, yeqingwei@nbu.edu.cn, zhouyu@nbu.edu.cn

Key Words:  Non-linear state-space model, Measurement bias, Extended Kalman filter, Extended Kalman smoothing, Expectation-maximization (EM) algorithm


Zhi-hua Lu, Meng-yao Zhu, Qing-wei Ye, Yu Zhou. Performance analysis of two EM-based measurement bias estimation processes for tracking systems[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(9): 1151-1165.

@article{title="Performance analysis of two EM-based measurement bias estimation processes for tracking systems",
author="Zhi-hua Lu, Meng-yao Zhu, Qing-wei Ye, Yu Zhou",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="9",
pages="1151-1165",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800214"
}

%0 Journal Article
%T Performance analysis of two EM-based measurement bias estimation processes for tracking systems
%A Zhi-hua Lu
%A Meng-yao Zhu
%A Qing-wei Ye
%A Yu Zhou
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 9
%P 1151-1165
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800214

TY - JOUR
T1 - Performance analysis of two EM-based measurement bias estimation processes for tracking systems
A1 - Zhi-hua Lu
A1 - Meng-yao Zhu
A1 - Qing-wei Ye
A1 - Yu Zhou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 9
SP - 1151
EP - 1165
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800214


Abstract: 
In target tracking, the measurements collected by sensors can be biased in some real scenarios, e.g., due to systematic error. To accurately estimate the target trajectory, it is essential that the measurement bias be identified in the first place. We investigate the iterative bias estimation process based on the expectation-maximization (EM) algorithm, for cases where sufficiently large numbers of measurements are at hand. With the assistance of extended Kalman filtering and smoothing, we derive two EM estimation processes to estimate the measurement bias which is formulated as a random variable in one state-space model and a constant value in another. More importantly, we theoretically derive the global convergence result of the EM-based measurement bias estimation and reveal the link between the two proposed EM estimation processes in the respective state-space models. It is found that the bias estimate in the second state-space model is more accurate and of less complexity. Furthermore, the EM-based iterative estimation converges faster in the second state-space model than in the first one. As a byproduct, the target trajectory can be simultaneously estimated with the measurement bias, after processing a batch of measurements. These results are confirmed by our simulations.

针对目标跟踪的两种基于最大期望算法测量值偏差估计过程的性能分析

摘要:在现实目标跟踪问题中,传感器采集的测量值,比如系统缺陷,可能存在一定程度偏差。为正确估计目标的运动轨迹,测量值偏差的识别与估计将成为首要任务。首先,提出两种状态空间模型,分别把测量值偏差视为随机变量和常数。其次,假设测量值样本数足够大,基于最大期望算法,利用扩展卡尔曼滤波和平滑,针对两种模型提出不同的循环迭代偏差估计过程。最后,分析这两种估计过程的全局收敛结果,揭示其内在联系。结果表明,第二种估计过程比第一种估计过程更简单准确,并且收敛速度更快。批量处理测量值样本后,可同时获得目标运动轨迹和测量值偏差的估计结果。

关键词:非线性状态空间模型;测量值偏差;扩展卡尔曼滤波;扩展卡尔曼平滑;最大期望算法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Blackman S, Popoli R, 1999. Design and Analysis of Modern Tracking Systems. Artech House, Boston, USA.

[2]Bugallo MF, Lu T, Djuric PM, 2007. Bearings-only tracking with biased measurements. Proc 2nd IEEE Int Workshop on Computational Advances in Multi-sensor Adaptive Processing, p.265-268.

[3]Fortunati S, Farina A, Gini F, et al., 2011. Least squares estimation and Cramér-Rao type lower bounds for relative sensor registration process. IEEE Trans Signal Process, 59(3):1075-1087.

[4]Gustafsson F, Gunnarsson F, 2005. Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Process Mag, 22(4):41-53.

[5]Hammes U, Zoubir AM, 2010. Robust mobile terminal tracking in NLOS environments based on data association. IEEE Trans Signal Process, 58(11):5872-5882.

[6]Haykin S, 2001. Kalman Filtering and Neural Networks. Wiley, New York, USA.

[7]Hernandez ML, Farina A, Ristic B, 2006. PCRLB for tracking in cluttered environments: measurement sequence conditioning approach. IEEE Trans Aerosp Electron Syst, 42(2):680-704.

[8]Huang DL, Leung H, 2010. An EM-IMM method for simultaneous registration and fusion of multiple radars and ESM sensors. In: Mukhopadhyay SC, Leung H (Eds.), Advances in Wireless Sensors and Sensor Networks. Springer Berlin Heidelberg, p.101-124.

[9]Karunaratne BS, Morelande MR, Moran B, 2012. Target tracking in a multipath environment. Proc IET Int Conf on Radar Systems, p.1-6.

[10]Li TC, Ekpenyong A, Huang YF, 2006. Source localization and tracking using distributed asynchronous sensors. IEEE Trans Signal Process, 54(10):3991-4003.

[11]Li TC, Su JY, Liu W, et al., 2017. Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front Inform Technol Electron Eng, 18(12):1913-1939.

[12]Li W, Leung H, Zhou YF, 2004. Space-time registration of radar and ESM using unscented Kalman filter. IEEE Trans Aerosp Electron Syst, 40(3):824-836.

[13]Li XR, Jilkov VP, 2003. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans Aerosp Electron Syst, 39(4):1333-1364.

[14]Li ZH, Chen SY, Leung H, et al., 2004. Joint data association, registration, and fusion using EM-KF. IEEE Trans Aerosp Electron Syst, 46(2):496-507.

[15]Lian F, Han C, Liu W, et al., 2011. Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter. IET Radar Sonar Navig, 5(4): 441-448.

[16]Lin XD, Bar-Shalom Y, Kirubarajan T, 2004. Exact multisensor dynamic bias estimation with local tracks. IEEE Trans Aerosp Electron Syst, 40(2):576-590.

[17]Matisko P, Havlena V, 2012. Cramér-Rao bounds for estimation of linear system noise covariances. J Mech Eng Autom, 2(2):6-11.

[18]Moon TK, 1996. The expectation-maximization algorithm. IEEE Signal Process Mag, 13(6):47-60.

[19]Okello NN, Challa S, 2004. Joint sensor registration and track-to-track fusion for distributed trackers. IEEE Trans Aerosp Electron Syst, 40(3):808-823.

[20]Okello NN, Ristic B, 2003. Maximum likelihood registration for multiple dissimilar sensors. IEEE Trans Aerosp Electron Syst, 39(3):1074-1083.

[21]Särkkä S, 2013. Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge, UK.

[22]Savic V, Wymeersch H, Larsson E, 2016. Target tracking in confined environments with uncertain sensor positions. IEEE Trans Veh Technol, 65(2):870-882.

[23]Sayed AH, Tarighat A, Khajehnouri N, 2005. Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process Mag, 22(4):24-40.

[24]Shumway RH, Stoffer DS, 1982. An approach to time series smoothing and forecasting using the EM algorithm. J Time Ser Anal, 3(4):253-264.

[25]Stinco P, Greco MS, Gini F, et al., 2013. Posterior Cramér-Rao lower bounds for passive bistatic radar tracking with uncertain target measurements. Signal Process, 93(12):3528-3540.

[26]Tzikas DG, Likas CL, Galatsanos NP, 2008. The variational approximation for Bayesian inference. IEEE Signal Process Mag, 25(6):131-146.

[27]Zhou L, Liu XX, Hu ZT, et al., 2017. Joint estimation of state and system biases in non-linear system. IET Signal Process, 11(1):10-16.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE