CLC number: TN953
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-06-01
Cited: 0
Clicked: 4733
Liping Wang, Ronghui Zhan, Yuan Huang, Jun Zhang, Zhaowen Zhuang. Joint tracking and classification of extended targets with complex shapes[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(6): 839-861.
@article{title="Joint tracking and classification of extended targets with complex shapes",
author="Liping Wang, Ronghui Zhan, Yuan Huang, Jun Zhang, Zhaowen Zhuang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="6",
pages="839-861",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000061"
}
%0 Journal Article
%T Joint tracking and classification of extended targets with complex shapes
%A Liping Wang
%A Ronghui Zhan
%A Yuan Huang
%A Jun Zhang
%A Zhaowen Zhuang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 6
%P 839-861
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000061
TY - JOUR
T1 - Joint tracking and classification of extended targets with complex shapes
A1 - Liping Wang
A1 - Ronghui Zhan
A1 - Yuan Huang
A1 - Jun Zhang
A1 - Zhaowen Zhuang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 6
SP - 839
EP - 861
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000061
Abstract: This paper addresses the problem of joint tracking and classification (JTC) of a single extended target with a complex shape. To describe this complex shape, the spatial extent state is first modeled by star-convex shape via a random hypersurface model (RHM), and then used as feature information for target classification. The target state is modeled by two vectors to alleviate the influence of the high-dimensional state space and the severely nonlinear observation model on target state estimation, while the Euclidean distance metric of the normalized fourier descriptors is applied to obtain the analytical solution of the updated class probability. Consequently, the resulting method is called the “JTC-RHM method.” Besides, the proposed JTC-RHM is integrated into a bernoulli filter framework to solve the JTC of a single extended target in the presence of detection uncertainty and clutter, resulting in a JTC-RHM-Ber filter. Specifically, the recursive expressions of this filter are derived. Simulations indicate that: (1) the proposed JTC-RHM method can classify the targets with complex shapes and similar sizes more correctly, compared with the JTC method based on the random matrix model; (2) the proposed method performs better in target state estimation than the star-convex RHM based extended target tracking method; (3) the proposed JTC-RHM-Ber filter has a promising performance in state detection and estimation, and can achieve target classification correctly.
[1]Angelova D, Mihaylova L, 2006. Joint target tracking and classification with particle filtering and mixture Kalman filtering using kinematic radar information. Dig Signal Process, 16(2):180-204.
[2]Angelova D, Mihaylova L, Petrov N, et al., 2013. A convolution particle filtering approach for tracking elliptical extended objects. Proc 16th Int Conf on Information Fusion, p.1542-1549.
[3]Baum M, Hanebeck UD, 2014. Extended object tracking with random hypersurface models. IEEE Trans Aerosp Electron Syst, 50(1):149-159.
[4]Baum M, Klumpp V, Hanebeck UD, 2010. A novel Bayesian method for fitting a circle to noisy points. Proc 13th Int Conf on Information Fusion, p.1-6.
[5]Baum M, Faion F, Hanebeck UD, 2012. Modeling the target extent with multiplicative noise. Proc 15th Int Conf on Information Fusion, p.2406-2412.
[6]Beard M, Reuter S, Granström K, et al., 2016. Multiple extended target tracking with labeled random finite sets. IEEE Trans Signal Process, 64(7):1638-1653.
[7]Cao W, Lan J, Li XR, 2016. Conditional joint decision and estimation with application to joint tracking and classification. IEEE Trans Syst Man Cybern Syst, 46(4):459-471.
[8]Cao W, Lan J, Li XR, 2018. Extended object tracking and classification using radar and ESM sensor data. IEEE Signal Process Lett, 25(1):90-94.
[9]de Freitas A, Mihaylova L, Gning A, et al., 2019. A box particle filter method for tracking multiple extended objects. IEEE Trans Aerosp Electron Syst, 55(4):1640-1655.
[10]Eryildirim A, Guldogan MB, 2016. A Bernoulli filter for extended target tracking using random matrices in a UWB sensor network. IEEE Sens J, 16(11):4362-4373.
[11]Feldmann M, Fränken D, Koch W, 2011. Tracking of extended objects and group targets using random matrices. IEEE Trans Signal Process, 59(4):1409-1420.
[12]Gilholm K, Salmond D, 2005. Spatial distribution model for tracking extended objects. IEE Proc Radar Sonar Navig, 152(5):364-371.
[13]Granström K, Lundquist C, Orguner O, 2012. Extended target tracking using a Gaussian-mixture PHD filter. IEEE Trans Aerosp Electron Syst, 48(4):3268-3286.
[14]Granström K, Reuter S, Meissner D, et al., 2014. A multiple model PHD approach to tracking of cars under an assumed rectangular shape. Proc 17th Int Conf on Information Fusion, p.1-8.
[15]Granström K, Willett P, Bar-Shalom Y, 2015. An extended target tracking model with multiple random matrices and unified kinematics. Proc 18th Int Conf on Information Fusion, p.1007-1014.
[16]Granström K, Baum M, Reuter S, 2017. Extended object tracking: introduction, overview, and applications. J Adv Inform Fus, 12(2):139-174.
[17]Hirscher T, Scheel A, Reuter S, et al., 2016. Multiple extended object tracking using Gaussian processes. Proc 19th Int Conf on Information Fusion, p.1-8.
[18]Hu Q, Ji HB, Zhang YQ, 2018. A standard PHD filter for joint tracking and classification of maneuvering extended targets using random matrix. Signal Process, 144:352-363.
[19]Jiang H, Zhan K, Xu L, 2015. Joint tracking and classification with constraints and reassignment by radar and ESM. Dig Signal Process, 40:213-223.
[20]Knill C, Scheel A, Dietmayer K, 2016. A direct scattering model for tracking vehicles with high-resolution radars. Proc IEEE Intelligent Vehicles Symp, p.298-303.
[21]Koch JW, 2008. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Trans Aerosp Electron Syst, 44(3):1042-1059.
[22]Lan J, Li XR, 2013. Joint tracking and classification of extended object using random matrix. Proc 16th Int Conf on Information Fusion, p.1550-1557.
[23]Lan J, Li XR, 2014. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix. IEEE Trans Signal Process, 62(9):2450-2463.
[24]Lan J, Li XR, 2016. Tracking of extended object or target group using random matrix: new model and approach. IEEE Trans Aerosp Electron Syst, 52(6):2973-2989.
[25]Magnant C, Kemkemian S, Zimmer L, 2018. Joint tracking fand classification for extended targets in maritime surveillance. Proc IEEE Radar Conf, p.1117-1122.
[26]Mahler RPS, 2007. Statistical Multisource-Multitarget Information Fusion. Artech House, Boston, USA.
[27]Mahler RPS, 2014. Advances in Statistical Multisource-Multitarget Information Fusion. Artech House, Boston, USA.
[28]Mihaylova L, Carmi AY, Septier F, et al., 2014. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking. Dig Signal Process, 25:1-16.
[29]Ristic B, Gordon N, Bessell A, 2004. On target classification using kinematic data. Inform Fus, 5(1):15-21.
[30]Ristic B, Vo BT, Vo BN, et al., 2013. A tutorial on Bernoulli filters: theory, implementation and applications. IEEE Trans Signal Process, 61(13):3406-3430.
[31]Schuhmacher D, Vo BT, Vo BN, 2008. A consistent metric for performance evaluation of multi-object filters. IEEE Trans Signal Process, 56(8):3447-3457.
[32]Sun LF, Lan J, Li XR, 2018. Joint tracking and classification of extended object based on support functions. IET Radar Sonar Navig, 12(7):685-693.
[33]Wahlström N, Özkan E, 2015. Extended target tracking using Gaussian processes. IEEE Trans Signal Process, 63(16):4165-4178.
[34]Yang SS, Baum M, 2016. Second-order extended Kalman filter for extended object and group tracking. Proc 19th Int Conf on Information Fusion, p.1-7.
[35]Yang SS, Baum M, 2017. Extended Kalman filter for extended object tracking. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.4386-4390.
[36]Zhao YJ, Belkasim S, 2012. Multiresolution Fourier descriptors for multiresolution shape analysis. IEEE Signal Process Lett, 19(10):692-695.
Open peer comments: Debate/Discuss/Question/Opinion
<1>