Full Text:   <5187>

Summary:  <1316>

CLC number: TP27

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-04-27

Cited: 0

Clicked: 4806

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kai Cai

https://orcid.org/0000-0002-8784-0728

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.5 P.693-704

http://doi.org/10.1631/FITEE.2000156


Warehouse automation by logistic robotic networks: a cyber-physical control approach


Author(s):  Kai Cai

Affiliation(s):  Department of Electrical and Information Engineering, Osaka City University, Osaka 558-8585, Japan

Corresponding email(s):   kai.cai@eng.osaka-cu.ac.jp

Key Words:  Discrete-event systems, Cyber-physical systems, Robotic networks, Warehouse automation, Logistics


Kai Cai. Warehouse automation by logistic robotic networks: a cyber-physical control approach[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 693-704.

@article{title="Warehouse automation by logistic robotic networks: a cyber-physical control approach",
author="Kai Cai",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="5",
pages="693-704",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000156"
}

%0 Journal Article
%T Warehouse automation by logistic robotic networks: a cyber-physical control approach
%A Kai Cai
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 5
%P 693-704
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000156

TY - JOUR
T1 - Warehouse automation by logistic robotic networks: a cyber-physical control approach
A1 - Kai Cai
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 5
SP - 693
EP - 704
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000156


Abstract: 
In this paper we provide a tutorial on the background of warehouse automation using robotic networks and survey relevant work in the literature. We present a new cyber-physical control method that achieves safe, deadlock-free, efficient, and adaptive behavior of multiple robots serving the goods-to-man logistic operations. A central piece of this method is the incremental supervisory control design algorithm, which is computationally scalable with respect to the number of robots. Finally, we provide a case study on 30 robots with changing conditions to demonstrate the effectiveness of the proposed method.

通过物流机器人网络实现仓库自动化:一种信息物理控制方法

蔡凯
大阪市立大学电子与信息工程学院,日本大阪市,558-8585

摘要:本文提供使用机器人网络实现仓库自动化的背景教程并回顾近期相关文献。提出一种新的信息物理控制方法,以实现多机器人服务"货到人"物流作业的安全、无锁死、高效和自适应行为。该方法的核心是增量式监督控制设计算法,该算法相对于机器人数量在计算上可扩展。最后,给出30个机器人在可变环境下的一个实例分析,以验证该方法的有效性。

关键词:离散事件系统;信息物理系统;机器人网络;仓库自动化;物流

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arsie A, Savla K, Frazzoli E, 2009. Efficient routing algorithms for multiple vehicles with no explicit communications. IEEE Trans Autom Contr, 54(10):2302-2317.

[2]Belta C, Bicchi A, Egerstedt M, et al., 2007. Symbolic planning and control of robot motion [grand challenges of robotics. IEEE Robot Autom Mag, 14(1):61-70.

[3]Belta C, Yordanov B, Gol EA, 2017. Formal Methods for Discrete-Time Dynamical Systems. Springer, Cham, Switzerland.

[4]Bertsimas DJ, van Ryzin G, 1991. A stochastic and dynamic vehicle routing problem in the Euclidean plane. Oper Res, 39(4):601-615.

[5]Bertsimas DJ, van Ryzin G, 1993. Stochastic and dynamic vehicle routing in the Euclidean plane with multiple capacitated vehicles. Oper Res, 41(1):60-76.

[6]Bullo F, Frazzoli E, Pavone M, et al., 2011. Dynamic vehicle routing for robotic systems. Proc IEEE, 99(9):1482-1504.

[7]Cai K, Wonham WM, 2016. Supervisor Localization: a Top-Down Approach to Distributed Control of Discrete-Event Systems. Springer, Cham, Switzerland.

[8]Cai K, Wonham WM, 2020. Supervisory control of discrete-event systems. In: Baillieul J, Samad T (Eds.), Encyclopedia of Systems and Control. Springer, London, UK.

[9]Ĉáp M, Novák P, Kleiner A, et al., 2015. Prioritized planning algorithms for trajectory coordination of multiple mobile robots. IEEE Trans Autom Sci Eng, 12(3):835-849.

[10]Chen YS, Ding XC, Stefanescu A, et al., 2012. Formal approach to the deployment of distributed robotic teams. IEEE Trans Robot, 28(1):158-171.

[11]Chung SL, Lafortune S, Lin F, 1992. Limited lookahead policies in supervisory control of discrete event systems. IEEE Trans Autom Contr, 37(12):1921-1935.

[12]Chung SL, Lafortune S, Lin F, 1993. Recursive computation of limited lookahead supervisory controls for discrete event systems. Discr Event Dynam Syst, 3(1):71-100.

[13]Chung SL, Lafortune S, Lin F, 1994. Supervisory control using variable lookahead policies. Discr Event Dynam Syst, 4(3):237-268.

[14]Gohari P, Wonham WM, 2000. On the complexity of supervisory control design in the RW framework. IEEE Trans Syst Man Cybern, 30(5):643-652.

[15]Goranko V, Galton A, 2015. Temporal Logic. Metaphysics Research Lab, Stanford University, USA.

[16]Grädel E, Thomas W, Wilke T, 2002. Automata, Logics, and Infinite Games. Springer, Germany.

[17]Hadj-Alouane NB, Lafortune S, Lin F, 1996. Centralized and distributed algorithms for on-line synthesis of maximal control policies under partial observation. Discr Event Dynam Syst, 6(4):379-427.

[18]Hart PE, Nilsson NJ, Raphael B, 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern, 4(2):100-107.

[19]Karaman S, Walter MR, Perez A, et al., 2011. Anytime motion planning using the RRT. Proc IEEE Int Conf on Robotics and Automation, p.1478-1483.

[20]Kloetzer M, Belta C, 2008. A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans Autom Contr, 53(1):287-297.

[21]Kress-Gazit H, Fainekos GE, Pappas GJ, 2009. Temporal-logic-based reactive mission and motion planning. IEEE Trans Robot, 25(6):1370-1381.

[22]Kroger F, Merz S, 2010. Temporal Logic and State Systems. Springer, New York, USA.

[23]Kumar R, Cheung HM, Marcus SI, 1998. Extension based limited lookahead supervision of discrete event systems. Automatica, 34(11):1327-1344.

[24]LaValle SM, 2006. Planning Algorithms. Cambridge University Press, New York, USA.

[25]LaValle SM, Kuffner JJJr, 2001. Randomized kinodynamic planning. Int J Robot Res, 20(5):378-400.

[26]Manna Z, Pnueli A, 1992. The Temporal Logic of Reactive and Concurrent Systems. Springer, New York, USA.

[27]Pinedo ML, 2012. Scheduling: Theory, Algorithms, and Systems (4th Ed.). Springer, New York, USA.

[28]Ramadge PJ, Wonham WM, 1987. Supervisory control of a class of discrete event processes. SIAM J Contr Optim, 25(1):206-230.

[29]Ramadge PJ, Wonham WM, 1989. The control of discrete event systems. Proc IEEE, 77(1):81-98.

[30]Smith SL, Pavone M, Bullo F, et al., 2010. Dynamic vehicle routing with priority classes of stochastic demands. SIAM J Contr Optim, 48(5):3224-3245.

[31]Standley T, 2010. Finding optimal solutions to cooperative pathfinding problems. Proc 24th AAAI Conf on Artificial Intelligence, p.173-178.

[32]Standley T, Korf R, 2011. Complete algorithms for cooperative pathfinding problems. Proc 22nd Int Joint Conf on Artificial Intelligence, p.668-673.

[33]Tatsumoto Y, Shiraishi M, Cai K, et al., 2018a. Application of online supervisory control of discrete-event systems to multi-robot warehouse automation. Contr Eng Pract, 81:97-104.

[34]Tatsumoto Y, Shiraishi M, Cai K, 2018b. Application of supervisory control theory with warehouse automation case study. Syst Contr Inform, 62(6):203-208.

[35]Tractica, 2017. Warehousing and Logistics Robots: Global Market Analysis and Forecasts. https://www.tractica.com/research/warehousing-and-logistics-robots

[36]{mbox{Westernacher Knowledge Series, 2017. The Trend Towards}} mboxWarehouse Automation. https://westernacher-consulting.com/wp-content/uploads/2017/11/Whitepaper_Trend_to_Automation_FINAL_s.pdf

[37]Wonham WM, Cai K, 2019. Supervisory Control of Discrete-Event Systems. Springer, Cham, Switzerland.

[38]Wonham WM, Ramadge PJ, 1987. On the supremal controllable sublanguage of a given language. SIAM J Contr Optim, 25(3):637-659.

[39]Wonham WM, Cai K, Rudie K, 2018. Supervisory control of discrete-event systems: a brief history. Ann Rev Contr, 45:250-256.

[40]Wurman PR, D’Andrea R, Mountz M, 2008. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag, 29(1):9-19.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE