CLC number: TN95
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-07-05
Cited: 0
Clicked: 5811
Citations: Bibtex RefMan EndNote GB/T7714
Sheng CHEN, Yongbo ZHAO, Yili HU, Chenghu CAO, Xiaojiao PANG. Target height and multipath attenuation joint estimation with complex scenarios for very high frequency radar[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(6): 937-949.
@article{title="Target height and multipath attenuation joint estimation with complex scenarios for very high frequency radar",
author="Sheng CHEN, Yongbo ZHAO, Yili HU, Chenghu CAO, Xiaojiao PANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="6",
pages="937-949",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100003"
}
%0 Journal Article
%T Target height and multipath attenuation joint estimation with complex scenarios for very high frequency radar
%A Sheng CHEN
%A Yongbo ZHAO
%A Yili HU
%A Chenghu CAO
%A Xiaojiao PANG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 6
%P 937-949
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100003
TY - JOUR
T1 - Target height and multipath attenuation joint estimation with complex scenarios for very high frequency radar
A1 - Sheng CHEN
A1 - Yongbo ZHAO
A1 - Yili HU
A1 - Chenghu CAO
A1 - Xiaojiao PANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 6
SP - 937
EP - 949
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100003
Abstract: low-angle estimation for very high frequency (VHF) radar is a difficult problem due to the multipath effect in the radar field, especially in complex scenarios where the reflection condition is unknown. To deal with this problem, we propose an algorithm of target height and multipath attenuation joint estimation. The amplitude of the surface reflection coefficient is estimated by the characteristic of the data itself, and it is assumed that there is no reflected signal when the amplitude is very small. The phase of the surface reflection coefficient and the phase difference between the direct and reflected signals are searched as the same part, and this represents the multipath phase attenuation. The Cramer-Rao bound of the proposed algorithm is also derived. Finally, computer simulations and real data processing results show that the proposed algorithm has good estimation performance under complex scenarios and works well with only one snapshot.
[1]Ahn S, Yang E, Chun J, et al., 2010. Low angle tracking using iterative multipath cancellation in sea surface environment. Proc IEEE Radar Conf, p.1156-1160.
[2]Ayasli S, 1986. SEKE: a computer model for low altitude radar propagation over irregular terrain. IEEE Trans Antenn Propag, 34(8):1013-1023.
[3]Barton DK, 1974. Low-angle radar tracking. Proc IEEE, 62(6):687-704.
[4]Beckmann P, Spizzichino A, 1987. The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House, Norwood, USA.
[5]Bosse E, Turner RM, Lecours M, 1991. Tracking Swerling fluctuating targets at low altitude over the sea. IEEE Trans Aerosp Electron Syst, 27(5):806-822.
[6]Griesser T, Balanis C, 2003. Oceanic low-angle monopulse radar tracking errors. IEEE J Ocean Eng, 12(1):289-295.
[7]Heylen R, Zare A, Gader P, et al., 2016. Hyperspectral unmixing with endmember variability via alternating angle minimization. IEEE Trans Geosci Remote Sens, 54(8):4983-4993.
[8]Lo T, Litva J, 1991. Use of a highly deterministic multipath signal model in low-angle tracking. IEE Proc F (Radar Signal Process), 138(2):163-171.
[9]Mahafza BR, 2013. Radar Systems Analysis and Design Using Matlab (3rd Ed.). CRC Press, Boca Raton, USA.
[10]Park D, Yang E, Ahn S, et al., 2014. Adaptive beamforming for low-angle target tracking under multipath interference. IEEE Trans Aerosp Electron Syst, 50(4):2564-2577.
[11]Pillai SU, Kwon BH, 1989. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans Acoust Speech Signal Process, 37(1):8-15.
[12]Roy R, Kailath T, 1989. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process, 37(7):984-995.
[13]Schmidt RO, 1986. Multiple emitter location and signal parameter estimation. IEEE Trans Antenn Propag, 34(3):276-280.
[14]Shan TJ, Wax M, Kailath T, 1985. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans Acoust Speech Signal Process, 33(4):806-811.
[15]Skolnik MI, 2008. Radar Handbook (3rd Ed.). McGraw-Hill, New York, USA.
[16]Takahashi R, Hirata K, Maniwa H, 2010. Altitude estimation of low elevation target over the sea for surface based phased array radar. Proc IEEE Radar Conf, p.123-128.
[17]Teti JG, 2000. Wide-band airborne radar operating considerations for low-altitude surveillance in the presence of specular multipath. IEEE Trans Antenn Propag, 48(2):176-191.
[18]Wang SH, Cao YH, Su HT, 2014. Joint estimation of the target height and the reflecting surface height in low angle radar. Proc 12th Int Conf on Signal Processing, p.1868-1871.
[19]Wang SH, Cao YH, Su HT, et al., 2016. Target and reflecting surface height joint estimation in low-angle radar. IET Radar Sonar Navig, 10(3):617-623.
[20]Xu ZH, Rao B, Xiong ZY, et al., 2013. Elevation finding algorithm in beam domain under multi-path environments for VHF radar. IET Radar Sonar Navig, 7(9):978-984.
[21]Xu ZH, Huang T, Xiong ZY, et al., 2014. Low angle tracking algorithm using frequency diversity for array radar. J Nat Univ Def Technol, 36(2):93-98(in Chinese).
[22]Zhu YT, Zhao YB, Shui PL, 2017. Low-angle target tracking using frequency-agile refined maximum likelihood algorithm. IET Radar Sonar Navig, 11(3):491-497.
[23]Ziskind I, Wax M, 1988. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans Acoust Speech Signal Process, 36(10):1553-1560.
Open peer comments: Debate/Discuss/Question/Opinion
<1>