CLC number: TN722
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-10-07
Cited: 0
Clicked: 2127
Mingyu LI, Xiaobing CHENG, Zhijiang DAI, Kang ZHONG, Tianfu CAI, Chaoyi HUANG. A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(3): 470-479.
@article{title="A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier",
author="Mingyu LI, Xiaobing CHENG, Zhijiang DAI, Kang ZHONG, Tianfu CAI, Chaoyi HUANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="3",
pages="470-479",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200250"
}
%0 Journal Article
%T A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier
%A Mingyu LI
%A Xiaobing CHENG
%A Zhijiang DAI
%A Kang ZHONG
%A Tianfu CAI
%A Chaoyi HUANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 3
%P 470-479
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200250
TY - JOUR
T1 - A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier
A1 - Mingyu LI
A1 - Xiaobing CHENG
A1 - Zhijiang DAI
A1 - Kang ZHONG
A1 - Tianfu CAI
A1 - Chaoyi HUANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 3
SP - 470
EP - 479
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200250
Abstract: A novel method is proposed to extend the output power back-off (OPBO) range of the doherty power amplifier (DPA). This study reveals that the OPBO range of the DPA can be extended by tuning the output impedance of the peaking stage away from infinity and changing the phase delay of the output matching network of the carrier power amplifier. Based on this theory, a large-OPBO-range high-efficiency asymmetrical DPA working band from 1.55 to 2.2 GHz (35% relative bandwidth) is designed to verify the proposed method. Experimental results show that the DPA operates from 1.6 to 2.1 GHz. The range of the measured efficiency is 42.2%–52.1% in the OPBO state and 47%–62.7% in the saturation state. The OPBO range is 11.1–13.2 dB.
[1]Andersson CM, Gustafsson D, Yamanaka K, et al., 2012. Theory and design of class-J power amplifiers with dynamic load modulation. IEEE Trans Microw Theory Techn, 60(12):3778-3786.
[2]Bolotov AO, Kholyukov RG, Varlamov OV, 2018. EER power amplifier modulator efficiency improvement using PWM with additional sigma-delta modulation. Systems of Signal Synchronization, Generating and Processing in Telecommunications, p.1-4.
[3]Chung A, Rejeb MB, Darwish A, et al., 2018. Frequency doubler based outphasing system for millimeter wave vector signal generation. 15th European Radar Conf, p.449-452.
[4]Cidronali A, Mercanti M, Giovannelli NÒ, et al., 2013. On the signal probability distribution conscious characterization of GAN devices for optimum envelope tracking PA design. IEEE Microw Wirel Compon Lett, 23(7):380-382.
[5]Darraji R, Ghannouchi FM, Hammi O, 2011. A dual-input digitally driven Doherty amplifier architecture for performance enhancement of Doherty transmitters. IEEE Trans Microw Theory Techn, 59(5):1284-1293.
[6]de Falco PE, Mimis K, Ben-Smida S, et al., 2018. Single-ended branch PA characterisation for outphasing amplifiers. 13th European Microwave Integrated Circuits Conf, p.178-181.
[7]Fang XH, Cheng KKM, 2014. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IIEEE Trans Microw Theory Techn, 62(9):2038-2047.
[8]Fang XH, Liu HY, Cheng KKM, et al., 2018. Two-way Doherty power amplifier efficiency enhancement by incorporating transistors' nonlinear phase distortion. IEEE Trans Microw Theory Techn, 28(2):168-170.
[9]Gustafsson D, Andersson CM, Fager C, 2013. A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency. IEEE Trans Microw Theory Techn, 61(1):533-542.
[10]Hallberg W, Özen M, Gustafsson D, et al., 2016. A Doherty power amplifier design method for improved efficiency and linearity. IEEE Trans Microw Theory Techn, 64(12):4491-4504.
[11]Hasin MR, Kitchen J, 2019. Exploiting phase for extended efficiency range in symmetrical Doherty power amplifiers. IEEE Trans Microw Theory Techn, 67(8):3455-3463.
[12]Iwamoto M, Williams A, Chen PF, et al., 2001. An extended Doherty amplifier with high efficiency over a wide power range. IEEE Trans Microw Theory Techn, 49(12):2472-2479.
[13]Kim B, Kim J, Kim I, et al., 2006. The Doherty power amplifier. IEEE Microw Mag, 7(5):42-50.
[14]Kliks A, Kulacz L, Kryszkiewicz P, et al., 2020. Beyond 5G: big data processing for better spectrum utilization. IEEE Veh Technol Mag, 15(3):40-50.
[15]Koenig S, Lopez-Diaz D, Antes J, et al., 2013. Wireless sub-THz communication system with high data rate. Nat Photon, 7(12):977-981.
[16]Lee J, Son J, Kim B, 2014. Optimised Doherty power amplifier with auxiliary peaking cell. Electron Lett, 50(18):1299-1301.
[17]Lee SC, Paek JS, Jung JH, et al., 2015. 2.7 A hybrid supply modulator with 10dB ET operation dynamic range achieving a PAE of 42.6% at 27.0dBm PA output power. IEEE Int Solid-State Circuits Conf Digest of Technical Papers, p.1-3.
[18]Lehna R, Bangert A, 2016. Novel output combiner for three-way Doherty power amplifiers. 11th European Microwave Integrated Circuits Conf, p.137-140.
[19]Li C, You F, Peng J, et al., 2020. Co-design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-off region. IEEE Trans Circ Syst II Expr Briefs, 67(10):1730-1734.
[20]Li M, Li Z, Zheng Q, et al., 2022. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front Inform Technol Electron Eng, 23(2):346-350.
[21]Liu X, Lv GS, Wang DH, et al., 2020. Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review. Front Inform Technol Electron Eng, 21(1):72-96.
[22]Mustafa AK, Bassoo V, Faulkner M, 2009. Reducing the drive signal bandwidths of EER microwave power amplifiers. IEEE MTT-S Int Microwave Symp Digest, p.1525-1528.
[23]Nghiem XA, Negra R, 2014. Novel design of a 10 dB back-off broadband sequential Doherty power amplifier for wireless applications. IEEE Topical Conf on Power Amplifiers for Wireless and Radio Applications, p.22-24.
[24]Özen M, Andersson K, Fager C, 2016. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Techn, 64(4):1273-1284.
[25]Pang JZ, He SB, Dai ZJ, et al., 2016. Design of a post-matching asymmetric Doherty power amplifier for broadband applications. IEEE Microw Wirel Compon Lett, 26(1):52-54.
[26]Sen B, 2018. A 60W class S and outphasing hybrid digital transmitter for wireless communication. IEEE Topical Conf on RF/Microwave Power Amplifiers for Radio and Wireless Applications, p.8-11.
[27]Suo HL, Bao JF, 2008. Three-way Doherty power amplifier with uneven power drive. 11th IEEE Int Conf on Communication Technology, p.293-296.
[28]Tajima Y, Wandrei D, Schultz QS, et al., 2017. Improved efficiency in outphasing power amplifier by mixing outphasing and amplitude modulation. IEEE Topical Conf on RF/Microwave Power Amplifiers for Radio and Wireless Applications, p.55-58.
[29]Tan C, Liu SW, Jia JB, et al., 2020. A wideband electrical impedance tomography system based on sensitive bioimpedance spectrum bandwidth. IEEE Trans Instrum Meas, 69(1):144-154.
[30]Vijarnstit P, Maneekut R, Kaewplung P, 2015. A flexible fiber access network using superchannel coherent optical orthogonal frequency division multiplexing. 17th Int Conf on Advanced Communication Technology, p.319-322.
[31]Wei LL, Hu RQ, Qian Y, et al., 2014. Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel Commun, 21(6):136-143.
[32]Zhou XY, Zheng SY, Chan WS, et al., 2018. Postmatching Doherty power amplifier with extended back-off range based on self-generated harmonic injection. IEEE Trans Microw Theory Techn, 66(4):1951-1963.
Open peer comments: Debate/Discuss/Question/Opinion
<1>