CLC number: TP73
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-08-30
Cited: 0
Clicked: 862
Citations: Bibtex RefMan EndNote GB/T7714
Yuying WANG, Jindong LI, Hezhi SUN, Xiang LI. A review on the developments and space applications of mid- and long-wavelength infrared detection technologies[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(8): 1031-1056.
@article{title="A review on the developments and space applications of mid- and long-wavelength infrared detection technologies",
author="Yuying WANG, Jindong LI, Hezhi SUN, Xiang LI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="8",
pages="1031-1056",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300218"
}
%0 Journal Article
%T A review on the developments and space applications of mid- and long-wavelength infrared detection technologies
%A Yuying WANG
%A Jindong LI
%A Hezhi SUN
%A Xiang LI
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 8
%P 1031-1056
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300218
TY - JOUR
T1 - A review on the developments and space applications of mid- and long-wavelength infrared detection technologies
A1 - Yuying WANG
A1 - Jindong LI
A1 - Hezhi SUN
A1 - Xiang LI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 8
SP - 1031
EP - 1056
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300218
Abstract: Mid-wavelength infrared (MWIR) detection and long-wavelength infrared (LWIR) detection constitute the key technologies for space-based Earth observation and astronomical detection. The advanced ability of infrared (IR) detection technology to penetrate the atmosphere and identify the camouflaged targets makes it excellent for space-based remote sensing. Thus, such detectors play an essential role in detecting and tracking low-temperature and far-distance moving targets. However, due to the diverse scenarios in which space-based IR detection systems are built, the key parameters of IR technologies are subject to unique demands. We review the developments and features of MWIR and LWIR detectors with a particular focus on their applications in space-based detection. We conduct a comprehensive analysis of key performance indicators for IR detection systems, including the ground sampling distance (GSD), operation range, and noise equivalent temperature difference (NETD) among others, and their interconnections with IR detector parameters. Additionally, the influences of pixel distance, focal plane array size, and operation temperature of space-based IR remote sensing are evaluated. The development requirements and technical challenges of MWIR and LWIR detection systems are also identified to achieve high-quality space-based observation platforms.
[1]Abbott JL, Thorndyke P, Catanzaro BE, et al., 2000. Lightweight thermally conductive composite optical bench for the tropospheric emission spectrometer (TES) interferometer. Proc SPIE 4004, Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, p.600-611.
[2]Ali HM, Rasib AW, Hamid NRA, et al., 2018. Determination of rubber-tree clones leaf diseases spectral using unmanned aerial vehicle compact sensor. IOP Conf Ser Earth Environ Sci, 169(1):012059.
[3]Alshahrani DO, Kesaria M, Anyebe EA, et al., 2022. Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors. Adv Photon Res, 3(2):2100094.
[4]Ayasse AK, Dennison PE, Foote M, et al., 2019. Methane mapping with future satellite imaging spectrometers. Remote Sens, 11(24):3054.
[5]Bajaj J, Sullivan G, Lee D, et al., 2007. Comparison of type-II superlattice and HgCdTe infrared detector technologies. Proc SPIE 6542, Infrared Technology and Applications XXXIII, Article 65420B.
[6]Bansal S, Sharma K, Jain P, et al., 2018. Bilayer graphene/HgCdTe based very long infrared photodetector with superior external quantum efficiency, responsivity, and detectivity. RSC Adv, 8(69):39579-39592.
[7]Barsi JA, Lee K, Kvaran G, et al., 2014. The spectral response of the Landsat-8 operational land imager. Remote Sens, 6(10):10232-10251.
[8]Bartschi BY, Morse DE, Woolston TL, 1996. The spatial infrared imaging telescope III. Johns Hopkins APL Tech Dig, 17(2):215-225.
[9]Beil A, Daum R, Harig R, et al., 1998. Remote sensing of atmospheric pollution by passive FTIR spectrometry. Proc SPIE 3493, Spectroscopic Atmospheric Environmental Monitoring Techniques, p.32-43.
[10]Bergman TL, Lavine AS, Dewitt DP, et al., 2011. Introduction to Heat Transfer (6th Ed.). John Wiley & Sons, Hoboken, USA.
[11]Bhan RK, Dhar V, 2019. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron Rev, 27(2):174-193.
[12]Blarducci A, Guzzi D, Marcoionni P, et al., 2002. Infrared detection of active fires and burnt areas: theory and observations. Infrared Phys Technol, 43(3-5):119-125.
[13]Blazejewski ER, Williams GM, McLevige WV, et al., 1994. Advanced LWIR HgCdTe detectors for strategic applications. Proc SPIE 2217, Aerial Surveillance Sensing Including Obscured and Underground Object Detection, p.278-290.
[14]Chang FR, Jiang Z, Wang GW, et al., 2021. Progress of long wavelength infrared focal plane arrays based on antimonide compounds superlattice. Sci Sin Phys Mech Astron, 51(2):027304(in Chinese).
[15]MEPIV Chatters, Eberhardt MB, 2003. Missile Warning Systems. Air University Press, Alabama, USA, p.227-234.
[16]Chauhan D, Perera AGU, Li LH, et al., 2018. Study of infrared photodetectors with wavelength extension mechanism. Infrared Phys Technol, 95:148-151.
[17]Chen J, Xi ZL, Qin Q, et al., 2023. Advance in high operating temperature HgCdTe infrared detector. Infrared Laser Eng, 52(1):20220462(in Chinese).
[18]Chen JS, Shao Y, Guo HD, et al., 2003. Destriping CMODIS data by power filtering. IEEE Trans Geosci Remote Sens, 41(9):2119-2124.
[19]Chen ZC, Tang LB, Hao Q, et al., 2022. Research progress on infrared detection materials and devices of HgCdTe multilayer heterojunction. Infrared Technol, 44(9):889-903(in Chinese).
[20]Dehzangi A, Haddadi A, Chevallier R, et al., 2019. Fabrication of 12 μm pixel-pitch 1280×1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetectors. Semicond Sci Technol, 34(3):03LT01.
[21]Ding GZ, Zhang ZY, Guo LW, 2014. Simulation and analysis of workflow and signal-to-noise ratio threshold for SBIRS-GEO early warning satellite’s detector. J Equip Acad, 25(5):78-82(in Chinese).
[22]Farrah D, Smith KE, Ardila D, et al., 2019. Review: far-infrared instrumentation and technological development for the next decade. J Astron Telesc Instrum Syst, 5(2):020901.
[23]Figer D, Lee J, Corrales E, et al., 2018. HgCdTe detectors grown on silicon substrates for observational astronomy. Proc SPIE 10709, High Energy, Optical, and Infrared Detectors for Astronomy VIII, Article 1070926.
[24]Gao JL, Wen CL, Bao ZJ, et al., 2016. Detecting slowly moving infrared targets using temporal filtering and association strategy. Front Inform Technol Electron Eng, 17(11):1176-1185.
[25]Gáspár A, Rieke GH, Guillard P, et al., 2021. The quantum efficiency and diffractive image artifacts of Si:As IBC mid-IR detector arrays at 5‒10 μm: implications for the JWST/MIRI detectors. Publ Astron Soc Pac, 133(1019):014504.
[26]Ge HN, Xie RZ, Guo JX, et al., 2022. Artificial micro- and nano-structure enhanced long and very long-wavelength infrared detectors. Acta Phys Sin, 71(11):110703(in Chinese).
[27]Gendron L, Carras M, Huynh A, et al., 2004. Quantum cascade photodetector. Appl Phys Lett, 85(14):2824-2826.
[28]Giorgetta FR, Baumann E, Graf M, et al., 2009. Quantum cascade detectors. IEEE J Quantum Electron, 45(8):1039-1052.
[29]Goddijn-Murphy L, Williamson B, 2019. On thermal infrared remote sensing of plastic pollution in natural waters. Remote Sens, 11(18):2159.
[30]Goldberg AC, 2003. Observation of the launch of the Atlas 5 EELV with a dual-band QWIP focal plane array. Proc SPIE 5152, Infrared Spaceborne Remote Sensing XI, p.100-114.
[31]Gravrand O, Rothman J, Cervera C, et al., 2017. HgCdTe detectors for space and science imaging in France: general issues and latest achievements. Proc SPIE, Int Conf on Space Optics, Article 1056240.
[32]Grein CH, Young PM, Flatté ME, et al., 1995. Long wavelength InAs/InGaSb infrared detectors: optimization of carrier lifetimes. J Appl Phys, 78(12):7143-7152.
[33]Guilmain BD, 1996. The midcourse space experiment (MSX). Proc IEEE Aerospace Applications Conf, p.205-216.
[34]Gunapala SD, Rhiger DR, Jagadish C, 2011. Advances in Infrared Photodetectors. Academic Press, Amsterdam, The Netherlands.
[35]Guo HD, Goodchild MF, Annoni A, 2020. Manual of Digital Earth. Springer, Singapore.
[36]Guo JX, Xie RZ, Wang P, et al., 2022. Infrared photodetectors for multidimensional optical information acquisition. J Infrared Millim Waves, 41(1):40-60(in Chinese).
[37]Hair JH, Reuter DC, Tonn SL, et al., 2018. Landsat 9 thermal infrared sensor 2 architecture and design. Proc IEEE Int Geoscience and Remote Sensing Symp, p.8841-8844.
[38]Hall DNB, Luppino G, Hodapp KW, et al., 2004. A 4 K×4 K HgCdTe astronomical camera enabled by the James Webb Space Telescope NIR detector development program. Proc SPIE 5499, Optical and Infrared Detectors for Astronomy, p.1-14.
[39]Han X, Jiang DW, Wang GW, et al., 2018. Small-pixel long wavelength infrared focal plane arrays based on InAs/GaSb Type-II superlattice. Infrared Phys Technol, 89:35-40.
[40]Hao HY, Wu DH, Xu YQ, et al., 2022. Research progress of high performance Sb-based superlattice mid-wave infrared photodetector. Infrared Laser Eng, 51(3):20220106(in Chinese).
[41]Harland DM, 2021. Infrared Astronomical Satellite. Encyclopedia Britannica. https://www.britannica.com/topic/Infrared-Astronomical-Satellite [Accessed on Dec. 3, 2021].
[42]Harwit M, McNutt DP, Shivanandan K, et al., 1966. A liquid nitrogen cooled, rocket borne, infrared telescope. Appl Opt, 5(11):1732-1735.
[43]Hickey M, Boehm N, Foltz R, et al., 2018. Performance of the QWIP focal plane array for NASA’s Landsat 9 mission. SPIE, Berlin, Germany.
[44]Hirabayashi M, Narasaki K, Tsunematsu S, et al., 2008. Thermal design and its on-orbit performance of the AKARI cryostat. Cryogenics, 48(5-6):189-197.
[45]Hoffman AW, Love PJ, Rosbeck JP, 2004. Megapixel detector arrays: visible to 28 µm. Optical Science and Technology, p.194-203.
[46]Höglund L, 2017. T2SL Technology for mid-IR detectors. Minerva Workshop, Article317803.
[47]Hu WD, Li Q, Chen XS, et al., 2019. Recent progress on advanced infrared photodetectors. Acta Phys Sin, 68(12):120701(in Chinese).
[48]Huang M, Chen JX, Xu JJ, et al., 2018. ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength infrared detectors. Infrared Phys Technol, 90:110-114.
[49]Hudson JR, 1969. Infrared System Engineering. John Wiley & Sons, New York, USA.
[50]Ishihara D, Wada T, Watarai H, et al., 2003. Evaluation of the mid- and near-infrared focal plane arrays for Japanese infrared astronomical satellite ASTRO-F. Proc SPIE 4850, IR Space Telescopes and Instruments, p.1008-1019.
[51]Ivanov R, Höglund L, Ramos D, et al., 2019. T2SL development for space at IRnova: from eSWIR to VLWIR. Proc SPIE 11151, Sensors, Systems, and Next-Generation Satellites XXIII, Article 1115111.
[52]James WB, 2019. High performance infrared for extreme precision radial velocity measurement detectors. Extreme Precision for Radial Velocity IV, Grindelwald, Switzerland.
[53]Jhabvala M, Choi KK, Gunapala S, et al., 2020. QWIPs, SLS, Landsat and the International Space Station. Proc SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, Article 1128802.
[54]Jiang ZH, Wu YN, Lu Z, et al., 2021. On-orbit performance of the FY-4 GIIRS stirling cryocooler over 2 years. J Low Temp Phys, 203(1-2):244-253.
[55]Joshi A, Kataria N, Garnett J, et al., 2021. A low SWAP-C 10-micron pitch 3-megapixel full motion video MWIR imaging system. Proc SPIE 11741, Infrared Technology and Applications XLVII, Article 117411M.
[56]Karim A, Andersson JY, 2013. Infrared detectors: advances, challenges and new technologies. IOP Conf Ser Mater Sci Eng, 51:012001.
[57]Karthikeyan L, Chawla I, Mishra AK, 2020. A review of remote sensing applications in agriculture for food security: crop growth and yield, irrigation, and crop losses. J Hydrol, 586:124905.
[58]Keller LD, Herter TL, Stacey GJ, et al., 2000. FORCAST: a facility 5- to 40-μm camera for SOFIA. Proc SPIE 4014, Airborne Telescope Systems, p.86-97.
[59]Kessler MF, 1989. The Infrared Space Observatory (ISO) and its instruments. Proc SPIE 1130, New Technologies for Astronomy, p.194-201.
[60]Kessler MF, 1993. Infrared Space Observatory: mission and spacecraft. Proc SPIE 2019, Infrared Spaceborne Remote Sensing, p.9-14.
[61]Khanal S, Fulton J, Shearer S, 2017. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput Electron Agric, 139:22-32.
[62]Kimukin I, Biyikli N, Kartaloglu T, et al., 2004. High-speed InSb photodetectors on GaAs for mid-IR applications. IEEE J Select Top Quantum Electron, 10(4):766-770.
[63]Kinch MA, 2000. Fundamental physics of infrared detector materials. J Electron Mater, 29(6):809-817.
[64]King DF, Radford WA, Patten EA, et al., 2006. Third-generation 1280×720 FPA development status atraytheon vision systems. Proc SPIE 6206, Infrared Technology and Applications XXXII, Article 62060W.
[65]Kopytko M, Rogalski A, 2022. New insights into the ultimate performance of HgCdTe photodiodes. Sens Actuat A Phys, 339:113511.
[66]Kruse PW, 2001. Uncooled Thermal Imaging: Arrays, Systems, and Applications. SPIE, Bellingham, USA.
[67]Lao YF, Perera AGU, Li LH, et al., 2014. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nat Photon, 8(5):412-418.
[68]Laureijs R, Racca G, Stagnaro L, et al., 2014. Euclid mission status. Proc SPIE 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, p.132-139.
[69]Lewis GN, Postol TA, 1997. Future challenges to ballistic missile defense. IEEE Spectr, 34(9):60-68.
[70]Li JD, 2021. Satellite Remote Sensing Technologies. Springer, Beijing, China.
[71]Li JD, Qiao K, Yang D, 2021. Design and Definition of On-orbit Imaging Quality of High-Resolution Optical Remote Sensing Satellites. National Defense Industry Press, Beijing, China(in Chinese).
[72]Li LM, He L, Wu X, et al., 2021. Wideband cryogenic amplifier for a superconducting nanowire single-photon detector. Front Inform Technol Electron Eng, 22(12):1666-1676.
[73]Lin CHT, Anselm KA, Kuo CH, et al., 2000. Type-II InAs/InGaSb SL photodetectors. Proc SPIE 3948, Photodetectors: Materials and Devices V, p.133-144.
[74]Liu JK, Xiao L, Liu Y, et al., 2019. Development of long-wavelength infrared detector and its space-based application requirements. Chin Phys B, 28(2):028504.
[75]Liu YN, Sun DX, Hu XN, et al., 2019. The advanced hyperspectral imager: aboard China’s GaoFen-5 satellite. IEEE Geosci Remote Sens Mag, 7(4):23-32.
[76]Lockwood R, Cooley T, Nadile R, et al., 2006. Advanced responsive tactically-effective military imaging spectrometer (ARTEMIS) design. Proc IEEE Int Symp on Geoscience and Remote Sensing, p.1628-1630.
[77]Long D, 1977. Photovoltaic and photoconductive infrared detectors. In: Keyes RJ (Ed.), Optical and Infrared Detectors. Springer Berlin Heidelberg, Germany, p.101-147.
[78]Long MS, Wang P, Fang HH, et al., 2019. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 29(19):1803807.
[79]Lv Q, Dou Y, Niu X, et al., 2015. Classification of Tiangong-1 hyperspectral remote sensing image via contextual sparse coding. Proc Int Conf on Machine Learning and Cybernetics, p.128-133.
[80]Lyu WD, Deng XG, Wang QW, et al., 2022. Infrared detector butted technology for space. Infrared Technol, 44(10):999-1008(in Chinese).
[81]Ma XZ, Tang LB, Zhang YP, et al., 2023. Research progress of silicon-based BIB infrared detector. Infrared Technol, 45(1):1-14(in Chinese).
[82]Manurkar P, Ramezani-Darvish S, Nguyen BM, et al., 2010. High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices. Appl Phys Lett, 97(19):193505.
[83]Martyniuk P, Antoszewski J, Martyniuk M, et al., 2014. New concepts in infrared photodetector designs. Appl Phys Rev, 1(4):041102.
[84]Migdall A, Polyakov S, Fan JY, et al., 2013. Single-Photon Generation and Detection. Elsevier, Amsterdam, The Netherlands.
[85]Mill JD, O’Neil RR, Price S, et al., 1994. Midcourse space experiment: introduction to the spacecraft, instruments, and scientific objectives. J Spacecr Rock, 31(5):900-907.
[86]Miller JL, 1994. Principles of Infrared Technology: a Practical Guide to the State of the Art. Springer, New York, USA.
[87]Miller JL, 2004. Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics, and Lasers (2nd Ed.). McGraw-Hill, New York, USA.
[88]Montanaro M, McCorkel J, Tveekrem J, et al., 2018. Landsat 9 thermal infrared sensor 2 preliminary stray light assessment. Proc IEEE Int Geoscience and Remote Sensing Symp, p.8853-8856.
[89]Nakagawa T, Matsuhara H, Kawakatsu Y, 2012. The next-generation infrared space telescope SPICA. Proc SPIE 8442, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter Wave, Article84420O.
[90]Ni GQ, Hao QW, Zhang HL, et al., 2006. Applications of multicolor FPA from the DSP and SBIRS space early warning systems. Laser Infrared, 36(11):1016-1019(in Chinese).
[91]Onaka T, Matsuhara H, Wada T, et al., 2010. AKARI warm mission. Proc SPIE 7731, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter Wave, Article77310M.
[92]Pan XK, Jiang MJ, Wang D, et al., 2023. Application and frontier trend of infrared-terahertz photoelectric detector. Chin J Quantum Electron, 40(2):217-237(in Chinese).
[93]Park H, Choi J, 2021. Mineral detection using sharpened VNIR and SWIR bands of Worldview-3 satellite imagery. Sustainability, 13(10):5518.
[94]Park S, Feinberg LD, Homan JL, et al., 2019. JWST overview and successful operation of the cryo-vac test at NASA JSC during hurricane harvey. Proc IEEE Aerospace Conf, p.1-11.
[95]Paschotta R, 2008. Encyclopedia of Laser Physics and Technology. Wiley, Weinheim, Germany.
[96]Paxton LJ, Meng CI, Anderson DE, et al., 1996. MSX—a multiuse space experiment. Johns Hopkins APL Tech Dig, 17(1):19-34.
[97]Perera AGU, Chauhan D, Lao YF, et al., 2016. Infrared photodetector with wavelength extension beyond the spectral limit. Proc SPIE 9844, Automatic Target Recognition XXVI, Article 98440X.
[98]Pérez-Cabello F, Montorio R, Alves DB, 2021. Remote sensing techniques to assess post-fire vegetation recovery. Curr Opin Environ Sci Health, 21:100251.
[99]Piotrowski J, Gawron W, 1997. Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Phys Technol, 38(2):63-68.
[100]Pipher JL, McMurtry CW, Cabrera MS, et al., 2021. Mid-infrared detector array technologies for SOFIA and sub-orbital observatory instruments. J Astron Instrum, 10(2):2150008.
[101]Price SD, Tedesco EF, Cohen M, et al., 1998. Astronomy on the midcourse space experiment. Symp-Int Astron Union, 179:115-117.
[102]Qin G, Ji FQ, Xia LK, et al., 2021. HgCdTe high operation temperature infrared detectors. Infrared Laser Eng, 50(4):20200328.
[103]Ranganath BK, Pradeep N, Manjula VB, et al., 2004. Detection of diseased rubber plantations using satellite remote sensing. J Ind Soc Remote Sens, 32(1):49-58.
[104]Reibel Y, Pere-Laperne N, Augey T, et al., 2014. Getting small: new 10μm pixel pitch cooled infrared products. Proc SPIE 9070, Infrared Technology and Applications XL, Article 907034.
[105]Ressler ME, Cho H, Lee RAM, et al., 2008. Performance of the JWST/MIRI Si:As detectors. Proc SPIE 7021, High Energy, Optical, and Infrared Detectors for Astronomy III, p.756-759.
[106]Ressler ME, Sukhatme KG, Franklin BR, et al., 2015. The mid-infrared instrument for the James Webb Space Telescope, VIII: the MIRI focal plane system. Publ Astron Soc Pac, 127(953):675-685.
[107]Reuter DC, Richardson CM, Pellerano FA, et al., 2015. The thermal infrared sensor (TIRS) on Landsat 8: design overview and pre-launch characterization. Remote Sens, 7(1):1135-1153.
[108]Rieke GH, 2007. Infrared detector arrays for astronomy. Ann Rev Astron Astrophys, 45:77-115.
[109]Rieke GH, Wright GS, Böker T, et al., 2015. The mid-infrared instrument for the JamesWebbSpaceTelescope, I: introduction. Publ Astron Soc Pac, 127(953):584-594.
[110]Robbins RC, 2019. The interagency challenges of hypersonic strike weapons. InterAgency J, 10(2):17-29.
[111]Roberts T, Roush F, 2007. Cryogenic refrigeration systems as an enabling technology in space sensing missions. Int Cryocooler Conf, p.595-604.
[112]Rodriguez JI, 2017. Feasibility of passive cryogenic cooling for solar powered outer planetary missions. Proc 47th Int Conf on Environmental Systems, p.1-19.
[113]Roelfsema PR, Shibai H, Armus L, et al., 2018. SPICA—a large cryogenic infrared space telescope: unveiling the obscured universe. Publ Astron Soc Aust, 35:e030.
[114]Roellig TL, McMurtry CW, Greene TP, et al., 2020. Mid-infrared detector development for the Origins Space Telescope. J Astron Telesc Instrum Syst, 6(4):041503.
[115]Rogalski A, 2002. Infrared detectors: an overview. Infrared Phys Technol, 43(3-5):187-210.
[116]Rogalski A, 2003a. Infrared detectors: status and trends. Prog Quantum Electron, 27(2-3):59-210.
[117]Rogalski A, 2003b. Quantum well photoconductors in infrared detector technology. J Appl Phys, 93(8):4355-4391.
[118]Rogalski A, 2005. HgCdTe infrared detector material: history, status and outlook. Rep Prog Phys, 68(10):2267-2336.
[119]Rogalski A, 2008. New material systems for third generation infrared photodetectors. Opto-Electron Rev, 16(4):458-482.
[120]Rogalski A, 2009. Infrared detectors for the future. Acta Phys Pol A, 116(3):389-406.
[121]Rogalski A, 2010. Infrared Detectors (2nd Ed.). CRC Press, Boca Raton, USA.
[122]Rogalski A, 2011. Recent progress in infrared detector technologies. Infrared Phys Technol, 54(3):136-154.
[123]Rogalski A, 2012. History of infrared detectors. Opto-Electron Rev, 20(3):279-308.
[124]Rogalski A, 2017. Next decade in infrared detectors. Proc 10433, Electro-Optical and Infrared Systems: Technology and Applications XIV, Article 104330L.
[125]Rogalski A, 2019. Infrared and Terahertz Detectors (3rd Ed.). CRC Press, Boca Raton, USA.
[126]Rogalski A, Antoszewski J, Faraone L, 2009. Third-generation infrared photodetector arrays. J Appl Phys, 105(9):091101.
[127]Rogalski A, Martyniuk P, Kopytko M, 2016. Challenges of small-pixel infrared detectors: a review. Rep Prog Phys, 79(4):046501.
[128]Rogalski A, Martyniuk P, Kopytko M, 2017. InAs/GaSb type-II superlattice infrared detectors: future prospect. Appl Phys Rev, 4(3):031304.
[129]Rogalski A, Kopytko M, Martyniuk P, 2019a. Two-dimensional infrared and terahertz detectors: outlook and status. Appl Phys Rev, 6(2):021316.
[130]Rogalski A, Martyniuk P, Kopytko M, 2019b. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog Quantum Electron, 68:100228.
[131]Rogalski A, Martyniuk P, Kopytko M, et al., 2020. InAsSb-based infrared photodetectors: thirty years later on. Sensors, 20(24):7047.
[132]Sanders DB, 2004. The cosmic evolution of luminous infrared galaxies: from IRAS to ISO, SCUBA and SIRTF. Adv Space Res, 34(3):535-542.
[133]Saraf AK, Rawat V, Banerjee P, et al., 2008. Satellite detection of earthquake thermal infrared precursors in Iran. Nat Hazards, 47(1):119-135.
[134]Schneider H, Liu HC, 2007. Quantum Well Infrared Photodetectors: Physics and Applications. Springer Berlin Heidelberg, Germany.
[135]Schwalm M, Barry M, Perron G, et al., 2005. Cryogenic telescope, scanner, and imaging optics for the wide-field infrared survey explorer (WISE). Proc SPIE 5904, Cryogenic Optical Systems and Instruments XI, Article 59040K.
[136]Sclar N, 1984. Properties of doped silicon and germanium infrared detectors. Prog Quantum Electron, 9(3):149-257.
[137]Seenipandi K, Ramachandran KK, Ghadei P, et al., 2021. Seasonal variability of sea surface temperature in Southern Indian coastal water using Landsat 8 OLI/TIRS images. In: Rani M, Seenipandi K, Rehman S, et al. (Eds.), Remote Sensing of Ocean and Coastal Environments. Elsevier, Amsterdam, The Netherlands, p.277-295.
[138]Sessler AM, Cornwall JM, Dietz B, et al., 2020. Countermeasures: a Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System. Union of Concerned Scientists and MIT Security Studies Program, Cambridge, MA, USA.
[139]Shang LT, Wang J, Xing WR, et al., 2021. Advances in type-II superlattice infrared detector technology at home and abroad. Laser Infrared, 51(6):683-694(in Chinese).
[140]Shen MZ, Lin XD, Ma WL, et al., 1996. Cryogenic test of an all-aluminum infrared optical system. Proc SPIE 2814, Cryogenic Optical Systems and Instruments VII, p.121-125.
[141]Shi Q, Zhang SK, Wang JL, et al., 2022. Progress on nBn infrared detectors. J Infrared Millim Waves, 41(1):139-150.
[142]Shi WH, Lv WM, Sun TY, et al., 2019. Optoelectronic platform and technology. Front Inform Technol Electron Eng, 20(4):439-457.
[143]Shinozaki K, Sato Y, Tokoku C, et al., 2020. Mechanical cooler system for the infrared space mission SPICA. Proc SPIE 11443, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter Wave, Article1144329.
[144]Singer C, Massoni JA, Mossbacher B, et al., 1991. Infrared Space Observatory optical subsystem. Proc SPIE 1494, Space Astronomical Telescopes and Instruments, p.255-264.
[145]Singh V, Sharma N, Singh S, 2020. A review of imaging techniques for plant disease detection. Artif Intell Agric, 4:229-242.
[146]Smith MS, 2006. Military Space Programs: Issues Concerning DOD’s SBIRS and STSS Programs. Order Code RS21148, Congressional Research Service, Washington, USA.
[147]Sobrino JA, del Frate F, Drusch M, et al., 2016. Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans Geosci Remote Sens, 54(5):2963-2972.
[148]Song SF, Huang LY, Tian Z, 2022. The theory and research advancement of HgCdTe detectors at high operating temperature. Laser Infrared, 52(5):636-640(in Chinese).
[149]Stair AT, 1996. MSX design parameters driven by targets and backgrounds. Johns Hopkins APL Tech Dig, 17(1):11-18.
[150]Starr B, Mears L, Fulk C, et al., 2016. RVS large format arrays for astronomy. Proc SPIE 9915, High Energy, Optical, and Infrared Detectors for Astronomy VII, Article 99152X.
[151]Sweeney SJ, Eales TD, Marko IP, 2020. The physics of mid-infrared semiconductor materials and heterostructures. In: Tournié E, Cerutti L (Eds.), Mid-infrared Optoelectronics. Elsevier, Duxford, UK, p.3-56.
[152]Swindells I, Wheeler R, Jerram P, et al., 2023. Infrared detector developments at Teledyne e2v for current and future missions. Proc SPIE 12777, Int Conf on Space Optics, Article 1277760.
[153]Szpakowski DM, Jensen JLR, 2019. A review of the applications of remote sensing in fire ecology. Remote Sens, 11(22):2638.
[154]Tan CL, Mohseni H, 2018. Emerging technologies for high performance infrared detectors. Nanophotonics, 7(1):169-197.
[155]Teng Y, Zhao Y, Wu QH, et al., 2019. High-performance long-wavelength InAs/GaSb superlattice detectors grown by MOCVD. IEEE Photon Technol Lett, 31(2):185-188.
[156]Tidrow MZ, Dyer WR, 2001. Infrared sensors for ballistic missile defense. Infrared Phys Technol, 42(3-5):333-336.
[157]Ting DZ, Soibel A, Khoshakhlagh A, et al., 2023. InAs/InAsSb superlattice infrared detectors. Opto-Electron Rev, 31:e144565.
[158]Watson J, Zondervan K, 2008. The Missile Defense Agency’s space tracking and surveillance system. Proc SPIE 7106, Sensors, Systems, and Next-Generation Satellites XII, Article 710617.
[159]Weeks SJ, Currie B, Bakun A, 2002. Massive emissions of toxic gas in the Atlantic. Nature, 415(6871):493-494.
[160]Wei YJ, Gin A, Razeghi M, et al., 2002. Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm. Appl Phys Lett, 81(19):3675-3677.
[161]Wiedner MC, Aalto S, Armus L, et al., 2021. Origins space telescope: from first light to life. Exp Astron, 51(3):595-624.
[162]Wójtowicz M, Wójtowicz A, Piekarczyk J, 2016. Application of remote sensing methods in agriculture. Commun Biometry Crop Sci, 11(1):31-50.
[163]Wright GS, Wright D, Goodson GB, et al., 2015. The mid-infrared instrument for the JamesWebbSpaceTelescope, II: design and build. Publ Astron Soc Pac, 127(953):595-611.
[164]Wu BH, Xia GQ, Li ZH, et al., 2002. Sulphur passivation of the InGaAsSb/GaSb photodiodes. Appl Phys Lett, 80(7):1303-1305.
[165]Wu YN, Dong DP, Lu Y, 2019. Spaceborne Cryocooler Technology. Science Press, Beijing, China(in Chinese).
[166]Yang CH, 2020. Remote sensing and precision agriculture technologies for crop disease detection and management with a practical application example. Engineering, 6(5):528-532.
[167]Yang RQ, Tian ZB, Klem JF, et al., 2010. Interband cascade photovoltaic devices. Appl Phys Lett, 96(6):063504.
[168]Ye ZH, Li HH, Wang JD, et al., 2022. Recent hotspots and innovative trends of infrared photon detectors. J Infrared Millim Waves, 41(1):15-39(in Chinese).
[169]Yin LM, Liu YQ, Li HW, 2013. Cold optics technology to achieve high-accuracy infrared detection. Infrared Technol, 35(9):535-540(in Chinese).
[170]Young E, 2002. Detector Needs for Long Wavelength Astrophysics. Report of the Working Group to NASA.
[171]Zhang J, Lu Y, Huang H, et al., 2021. Review of the overall parameter analysis of detection system of STSS. Proc SPIE 11763, 7th Symp on Novel Photoelectronic Detection Technology and Applications, Article 1176395.
[172]Zhang KJ, 2021. Research progress and trends of high operating temperature infrared detectors. Infrared Technol, 43(8):766-772(in Chinese).
[173]Zhang S, Hu Y, Hao Q, 2020. Advances of sensitive infrared detectors with HgTe colloidal quantum dots. Coatings, 10(8):760.
[174]Zhang X, Guo YZ, Wan XM, et al., 2010. Simulation of early warning and detection capability of ballistic missile in boosting phase based on infrared characteristic. Shipboard Electron Countermeas, 33(5):92-95(in Chinese).
[175]Zhao W, Wang X, Liu H, et al., 2020. Development of space-based diffractive telescopes. Front Inform Technol Electron Eng, 21(6):884-902.
[176]Zhao X, Xiao ZQ, Kang Q, et al., 2010. Overview of the Fourier transform hyperspectral imager (HSI) boarded on HJ-1A satellite. Proc IEEE Int Geoscience and Remote Sensing Symp, p.4272-4274.
[177]Zheng L, Tidrow MZ, Novello A, et al., 2008. Type II strained layer superlattice: a potential infrared sensor material for space. Proc SPIE 6900, Quantum Sensing and Nanophotonic Devices V, Article 69000F.
[178]Zheng L, Tidrow M, Aitcheson L, et al., 2010. Developing high-performance III-V superlattice IRFPAs for defense: challenges and solutions. Proc SPIE 7660, Infrared Technology and Applications XXXVI, Article 76601E.
[179]Zhu P, Xiao L, Sun T, et al., 2022. Research progress of micro-nano structures enhanced infrared detectors. Infrared Laser Eng, 51(1):20210826(in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>