Full Text:   <759>

Summary:  <118>

Suppl. Mater.: 

CLC number: TP309

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-09-29

Cited: 0

Clicked: 955

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ziyi ZHOU

https://orcid.org/0009-0009-0367-7256

Chengyue WANG

https://orcid.org/0009-0000-6957-5468

Kexun YAN

https://orcid.org/0009-0000-4917-2872

Hui SHI

https://orcid.org/0000-0001-5029-7461

Xin PANG

https://orcid.org/0009-0008-0468-7563

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.9 P.1250-1265

http://doi.org/10.1631/FITEE.2300750


Reversible data hiding in encrypted images based on additive secret sharing and additive joint coding using an intelligent predictor


Author(s):  Ziyi ZHOU, Chengyue WANG, Kexun YAN, Hui SHI, Xin PANG

Affiliation(s):  School of Computer Science and Artificial Intelligence, Liaoning Normal University, Dalian 116029, China

Corresponding email(s):   zzy_163361@163.com, shihui_jiayou@lnnu.edu.cn, pang.xin@163.com

Key Words:  Reversible data hiding in encrypted images (RDHEI), Additive secret sharing, Adaptive joint coding, Intelligent predictor


Ziyi ZHOU, Chengyue WANG, Kexun YAN, Hui SHI, Xin PANG. Reversible data hiding in encrypted images based on additive secret sharing and additive joint coding using an intelligent predictor[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(9): 1250-1265.

@article{title="Reversible data hiding in encrypted images based on additive secret sharing and additive joint coding using an intelligent predictor",
author="Ziyi ZHOU, Chengyue WANG, Kexun YAN, Hui SHI, Xin PANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="9",
pages="1250-1265",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300750"
}

%0 Journal Article
%T Reversible data hiding in encrypted images based on additive secret sharing and additive joint coding using an intelligent predictor
%A Ziyi ZHOU
%A Chengyue WANG
%A Kexun YAN
%A Hui SHI
%A Xin PANG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 9
%P 1250-1265
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300750

TY - JOUR
T1 - Reversible data hiding in encrypted images based on additive secret sharing and additive joint coding using an intelligent predictor
A1 - Ziyi ZHOU
A1 - Chengyue WANG
A1 - Kexun YAN
A1 - Hui SHI
A1 - Xin PANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 9
SP - 1250
EP - 1265
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300750


Abstract: 
reversible data hiding in encrypted images (RDHEI) is essential for safeguarding sensitive information within the encrypted domain. In this study, we propose an intelligent pixel predictor based on a residual group block and a spatial attention module, showing superior pixel prediction performance compared to existing predictors. Additionally, we introduce an adaptive joint coding method that leverages bit-plane characteristics and intra-block pixel correlations to maximize embedding space, outperforming single coding approaches. The image owner employs the presented intelligent predictor to forecast the original image, followed by encryption through additive secret sharing before conveying the encrypted image to data hiders. Subsequently, data hiders encrypt secret data and embed them within the encrypted image before transmitting the image to the receiver. The receiver can extract secret data and recover the original image losslessly, with the processes of data extraction and image recovery being separable. Our innovative approach combines an intelligent predictor with additive secret sharing, achieving reversible data embedding and extraction while ensuring security and lossless recovery. Experimental results demonstrate that the predictor performs well and has a substantial embedding capacity. For the Lena image, the number of prediction errors within the range of [-5, 5] is as high as 242 500 and our predictor achieves an embedding capacity of 4.39 bpp.

基于加性秘密共享和智能预测器自适应联合编码的密文图像可逆信息隐藏

周梓怡,王承悦,颜克勋,石慧,庞新
辽宁师范大学计算机与人工智能学院,中国大连市,116029
摘要:密文域可逆信息隐藏在保护加密域敏感信息方面至关重要。本文提出一种基于残差组块和空间注意力模块的智能像素预测器,相较于现有预测器,该预测器表现出更优异的像素预测性能。此外,本文提出一种优于传统单一编码方法的自适应联合编码方法,该方法利用位平面特性和块内像素相关性优化嵌入空间。图像所有者使用所提出的智能预测器预测原始图像,然后通过加性秘密共享进行加密,并将其传递给数据隐藏方。随后,数据隐藏方对秘密数据进行加密,并将其嵌入加密图像中,然后再传送给接收方。接收方可以提取秘密数据并无损恢复原始图像,数据提取和图像恢复过程是可分离的。该方法将智能预测器和加性秘密共享相结合,实现可逆数据的嵌入和提取,同时确保安全性和无损恢复。实验结果表明,该预测器性能良好,具有较强的嵌入能力。对于Lena图像,在[−5,5]范围内我们预测器的预测误差数量高达242 500,且获得4.39 bpp的嵌入容量。

关键词:密文图像可逆信息隐藏;加性秘密共享;自适应联合编码;智能预测器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ankita Gupta NCU, 2023. BOWS2, Mendeley Data, V1. https://data.mendeley.‍com/datasets/kb3ngxfmjw/1 [Accessed on Oct. 1, 2023].

[2]Bas P, Filler T, Pevný T, 2011. “Break our steganographic system”: the ins and outs of organizing BOSS. Proc 13th Int Workshop on Information Hiding, p.59-70.

[3]Chang J, Ding F, Li XL, et al., 2021. Hybrid prediction-based pixel-value-ordering method for reversible data hiding. J Vis Commun Image Represent, 77:103097.

[4]Chen B, Lu W, Huang JW, et al., 2022. Secret sharing based reversible data hiding in encrypted images with multiple data-hiders. IEEE Trans Depend Sec Comput, 19(2):978-991.

[5]Deng J, Dong W, Socher R, et al., 2009. ImageNet: a large-scale hierarchical image database. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.248-255.

[6]Fu ZF, Gong MX, Long GQ, et al., 2022. Efficient capacity-distortion reversible data hiding based on combining multipeak embedding with local complexity. Appl Intell, 52(11):13006-13026.

[7]Hua ZY, Wang YX, Yi S, et al., 2022. Reversible data hiding in encrypted images using cipher-feedback secret sharing. IEEE Trans Circ Syst Video Technol, 32(8):4968-4982.

[8]Hua ZY, Liu XY, Zheng YF, et al., 2023. Reversible data hiding over encrypted images via preprocessing-free matrix secret sharing. IEEE Trans Circ Syst Video Technol, 34(3):1799-1814.

[9]Jeena P, Shreelekshmi R, 2023. High capacity reversible data hiding in encrypted images using block labeling. Multim Tools Appl, 82(17):25883-25898.

[10]Khade PN, Narnaware M, 2012. 3D chaotic functions for image encryption. IJCSI Int J Comput Sci Iss, 9(3):323-328.

[11]Kingma DP, Ba J, 2017. Adam: a method for stochastic optimization. https://arxiv.org/abs/1412.6980

[12]LeCun Y, Bottou L, Bengio Y, et al., 1998. Gradient-based learning applied to document recognition. Proc IEEE, 86(11):2278-2324.

[13]Ni BB, Bi WH, 2023. New predictor-based schemes for reversible data hiding. Multim Tools Appl, 82(4):5923-5948.

[14]Qi KL, Zhang MQ, Di FQ, et al., 2023. High capacity reversible data hiding in encrypted images based on adaptive quadtree partitioning and MSB prediction. Front Inform Technol Electron Eng, 24(8):1156-1168.

[15]Qin C, Jiang CY, Mo Q, et al., 2021. Reversible data hiding in encrypted image via secret sharing based on GF(p) and GF(28). IEEE Trans Circ Syst Video Technol, 32(4):1928-1941.

[16]Schaefer G, Stich M, 2004. UCID: an uncompressed color image database. Proc SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia, p.472-480.

[17]Thodi DM, Rodríguez JJ, 2007. Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process, 16(3):721-730.

[18]Wang XY, Wang XY, Ma B, et al., 2021. High precision error prediction algorithm based on ridge regression predictor for reversible data hiding. IEEE Signal Process Lett, 28:1125-1129.

[19]Wang XY, Wang XY, Ma B, et al., 2023. High-performance reversible data hiding based on ridge regression prediction algorithm. Signal Process, 204:108818.

[20]Wang YM, Xiong GQ, He WG, 2023. High-capacity reversible data hiding in encrypted images based on pixel-value-ordering and histogram shifting. Expert Syst Appl, 211:118600.

[21]Weinberger MJ, Seroussi G, Sapiro G, 2000. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process, 9(8):1309-1324.

[22]Woo S, Park J, Lee JY, et al., 2018. CBAM: convolutional block attention module. Proc 15th European Conf on Computer Vision, p.3-19.

[23]Wu YQ, Xiang YZ, Guo YT, et al., 2020. An improved reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans Multim, 22(8):1929-1938.

[24]Xiang SJ, Luo XR, 2018. Reversible data hiding in homomorphic encrypted domain by mirroring ciphertext group. IEEE Trans Circ Syst Video Technol, 28(11):3099-3110.

[25]Yan XH, Li LL, Chen J, et al., 2023. Public key based bidirectional shadow image authentication without pixel expansion in image secret sharing. Front Inform Technol Electron Eng, 24(1):88-103.

[26]Yin ZX, Xiang YZ, Zhang XP, 2020. Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding. IEEE Trans Multim, 22(4):874-884.

[27]Yin ZX, Peng YY, Xiang YZ, 2022. Reversible data hiding in encrypted images based on pixel prediction and bit-plane compression. IEEE Trans Depend Sec Comput, 19(2):992-1002.

[28]Yu CQ, Zhang XQ, Zhang XP, et al., 2022. Reversible data hiding with hierarchical embedding for encrypted images. IEEE Trans Circ Syst Video Technol, 32(2):451-466.

[29]Yu CQ, Zhang XQ, Qin C, et al., 2023. Reversible data hiding in encrypted images with secret sharing and hybrid coding. IEEE Trans Circ Syst Video Technol, 33(11):6443-6458.

[30]Zhang XR, Pan ZB, Zhou Q, et al., 2023. A novel two-level embedding pattern for grayscale-invariant reversible data hiding. Multim Tools Appl, 82(22):33911-33935.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE