Full Text:   <926>

Summary:  <4>

CLC number: TP309.7

On-line Access: 2025-06-04

Received: 2023-11-08

Revision Accepted: 2024-03-28

Crosschecked: 2025-06-04

Cited: 0

Clicked: 1495

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xintao DUAN

0000-0001-8757-2447

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.5 P.728-741

http://doi.org/10.1631/FITEE.2300762


SCFformer: a binary data hiding method against JPEG compression based on spatial channel fusion Transformer


Author(s):  Xintao DUAN, Chun LI, Bingxin WEI, Guoming WU, Chuan QIN, Haewoon NAM

Affiliation(s):  School of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China; more

Corresponding email(s):   duanxintao@htu.edu.cn

Key Words:  Binary data hiding, Against JPEG compression, Discrete cosine transform quantization, SCFformer


Xintao DUAN, Chun LI, Bingxin WEI, Guoming WU, Chuan QIN, Haewoon NAM. SCFformer: a binary data hiding method against JPEG compression based on spatial channel fusion Transformer[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(5): 728-741.

@article{title="SCFformer: a binary data hiding method against JPEG compression based on spatial channel fusion Transformer",
author="Xintao DUAN, Chun LI, Bingxin WEI, Guoming WU, Chuan QIN, Haewoon NAM",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="5",
pages="728-741",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300762"
}

%0 Journal Article
%T SCFformer: a binary data hiding method against JPEG compression based on spatial channel fusion Transformer
%A Xintao DUAN
%A Chun LI
%A Bingxin WEI
%A Guoming WU
%A Chuan QIN
%A Haewoon NAM
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 5
%P 728-741
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300762

TY - JOUR
T1 - SCFformer: a binary data hiding method against JPEG compression based on spatial channel fusion Transformer
A1 - Xintao DUAN
A1 - Chun LI
A1 - Bingxin WEI
A1 - Guoming WU
A1 - Chuan QIN
A1 - Haewoon NAM
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 5
SP - 728
EP - 741
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300762


Abstract: 
To enhance information security during transmission over public channels, images are frequently employed for binary data hiding. Nonetheless, data are vulnerable to distortion due to Joint Photographic Experts Group (JPEG) compression, leading to challenges in recovering the original binary data. Addressing this issue, this paper introduces a pioneering method for binary data hiding that leverages a combined spatial and channel attention Transformer, termed SCFformer, to withstand JPEG compression. This method employs a novel discrete cosine transform (DCT) quantization truncation mechanism during the hiding phase to bolster the stego image’s resistance to JPEG compression, using spatial and channel attention to conceal information in less perceptible areas, thereby enhancing the model’s resistance to steganalysis. In the extraction phase, the DCT quantization minimizes secret image loss during compression, facilitating easier information retrieval. The incorporation of scalable modules adds flexibility, allowing for variable-capacity data hiding. Experimental findings validate the high security, large capacity, and high flexibility of our scheme, alongside a marked improvement in binary data recovery post-JPEG compression, underscoring our method’s leading-edge performance.

SCFformer:一种基于空间通道融合Transformer的抗JPEG压缩的二进制数据隐藏方法

段新涛1,2,李春1,2,魏冰心3,吴国明1,2,秦川4,Haewoon NAM3
1河南师范大学计算机与信息工程学院,中国新乡市,453007
2河南师范大学人工智能重点实验室,中国新乡市,453007
3汉阳大学电气与电子工程学院,韩国安山市,15588
4上海理工大学光电信息与计算机工程学院,中国上海市,200093
摘要:为增强公共渠道传输过程中信息的安全性,图像常被用于二进制数据隐藏。由于采用联合图像专家组(JPEG)压缩,数据容易失真,恢复原始二进制数据面临挑战。本文提出一种开创性的二进制数据隐藏方法,利用一种结合了空间和通道注意力机制的Transformer模型(称为SCFformer)抵抗JPEG压缩。该方法在隐藏阶段采用一种新颖的离散余弦变换(DCT)量化截断机制,以增强图像的抗JPEG压缩能力,并通过空间和通道注意力机制将数据隐藏到不易察觉的区域,增强模型对隐写分析的抵抗能力。在提取阶段,DCT量化机制最大限度减少压缩过程中秘密图像的丢失,从而更容易实现信息的提取。可扩展模块的整合增加了灵活性,允许可变容量的数据隐藏。实验结果证实所提方案具有高安全性、大容量和高灵活性,同时在JPEG压缩后的二进制数据恢复方面取得显著改进,展示了所提方法的有效性。

关键词:二进制数据隐藏;抗JPEG压缩;离散余弦变换量化;SCFformer

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abood EW, Abdullah AM, Al Sibahe MA, et al., 2022. Audio steganography with enhanced LSB method for securing encrypted text with bit cycling. Bull Electr Eng Inform, 11(1):185-194.

[2]Baluja S, 2020. Hiding images within images. IEEE Trans Patt Anal Mach Intell, 42(7):1685-1697.

[3]Bhinder P, Singh K, Jindal N, 2018. Image-adaptive watermarking using maximum likelihood decoder for medical images. Multim Tools Appl, 77(8):10303-10328.

[4]Boehm B, 2014. StegExpose—a tool for detecting LSB steganography.

[5]Boroumand M, Chen M, Fridrich J, 2019. Deep residual network for steganalysis of digital images. IEEE Trans Inform Foren Secur, 14(5):1181-1193.

[6]Bui T, Agarwal S, Yu N, et al., 2023. RoSteALS: robust steganography using autoencoder latent space. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition Workshops, p.933-942.

[7]Chen BJ, Zhou CF, Jeon B, et al., 2018. Quaternion discrete fractional random transform for color image adaptive watermarking. Multim Tools Appl, 77(16):20809-20837.

[8]Guan ZY, Jing JP, Deng X, et al., 2023. DeepMIH: deep invertible network for multiple image hiding. IEEE Trans Patt Anal Mach Intell, 45(1):372-390.

[9]Guo LJ, Ni JQ, Shi YQ, 2012. An efficient JPEG steganographic scheme using uniform embedding. Proc IEEE Int Workshop on Information Forensics and Security, p.169-174.

[10]Guo MH, Xu TX, Liu JJ, et al., 2022. Attention mechanisms in computer vision: a survey. Comput Vis Med, 8(3):331-368.

[11]Harish NJ, Kumar BBS, Kusagur A, 2013. Hybrid robust watermarking techniques based on DWT, DCT and SVD. Int J Adv Electr Electron Eng, 2(5):137-143.

[12]Hayes J, Danezis G, 2017. Generating steganographic images via adversarial training. Proc 31st Int Conf on Neural Information Processing Systems, p.1951-1960.

[13]Holub V, Fridrich J, Denemark T, 2014. Universal distortion function for steganography in an arbitrary domain. EURASIP J Inform Secur, 2014:1.

[14]Horé A, Ziou D, 2010. Image quality metrics: PSNR vs. SSIM. Proc 20th Int Conf on Pattern Recognition, p.2366-2369.

[15]Huang XH, Deng ZF, Li DD, et al., 2023. MISSFormer: an effective Transformer for 2D medical image segmentation. IEEE Trans Med Imaging, 42(5):1484-1494.

[16]Isac B, Santhi V, 2011. A study on digital image and video watermarking schemes using neural networks. Int J Comput Appl, 12(9):1-6.

[17]Jassim FA, 2013. A novel steganography algorithm for hiding text in image using five modulus method. Int J Comput Appl, 72(17):39-44.

[18]Jing JP, Deng X, Xu M, et al., 2021. HiNet: deep image hiding by invertible network. Proc IEEE/CVF Int Conf on Computer Vision, p.4713-4722.

[19]Kim D, Shin C, Choi J, et al., 2023. Diffusion-Stego: training-free diffusion generative steganography via message projection.

[20]Kishore V, Chen XY, Wang Y, et al., 2022. Fixed neural network steganography: train the images, not the network. Proc 10th Int Conf on Learning Representations, p.1.

[21]Li S, Zhang XP, 2019. Toward construction-based data hiding: from secrets to fingerprint images. IEEE Trans Image Process, 28(3):1482-1497.

[22]Li ZZ, Yang XY, Shen KQ, et al., 2023. Adversarial feature hybrid framework for steganography with shifted window local loss. Neur Netw, 164:358-369.

[23]Liu Z, Lin YT, Cao Y, et al., 2021. Swin Transformer: hierarchical vision Transformer using shifted windows. Proc IEEE/CVF Int Conf on Computer Vision, p.9992-10002.

[24]Lu W, Sun W, Lu HT, 2009. Robust watermarking based on DWT and nonnegative matrix factorization. Comput Electr Eng, 35(1):183-188.

[25]Lu W, Zhang JH, Zhao XF, et al., 2021. Secure robust JPEG steganography based on autoencoder with adaptive BCH encoding. IEEE Trans Circ Syst Video Technol, 31(7):2909-2922.

[26]Luo YJ, Zhou TQ, Liu F, et al., 2023. IRWArt: levering watermarking performance for protecting high-quality artwork images. Proc ACM Web Conf, p.2340-2348.

[27]Mallika, Ubhi JS, Aggarwal AK, et al., 2022. Neural style transfer for image within images and conditional GANs for destylization. J Vis Commun Image Represent, 85:103483.

[28]Mou C, Xu YM, Song JC, et al., 2023. Large-capacity and flexible video steganography via invertible neural network. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.22606-22615.

[29]Shang F, Lan YH, Yang JH, et al., 2023. Robust data hiding for JPEG images with invertible neural network. Neur Netw, 163:219-232.

[30]Singh SP, Bhatnagar G, 2018. A new robust watermarking system in integer DCT domain. J Vis Commun Image Represent, 53:86-101.

[31]Singh SP, Rawat P, Agrawal S, 2012. A robust watermarking approach using DCT-DWT. Int J Emerg Technol Adv Eng, 2(8):300-305.

[32]Tao JY, Li S, Zhang XP, et al., 2019. Towards robust image steganography. IEEE Trans Circ Syst Video Technol, 29(2):594-600.

[33]Wei P, Li S, Zhang XP, et al., 2022. Generative steganography network. Proc 30th ACM Int Conf on Multimedia, p.1621-1629.

[34]Xu GS, Wu HZ, Shi YQ, 2016. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett, 23(5):708-712.

[35]Ye J, Ni JQ, Yi Y, 2017. Deep learning hierarchical representations for image steganalysis. IEEE Trans Inform Foren Secur, 12(11):2545-2557.

[36]Ye YX, Shan J, Bruzzone L, et al., 2017. Robust registration of multimodal remote sensing images based on structural similarity. IEEE Trans Geosci Remote Sens, 55(5):2941-2958.

[37]Yu XZ, Chen KJ, Wang YF, et al., 2020. Robust adaptive steganography based on generalized dither modulation and expanded embedding domain. Signal Process, 168:107343.

[38]Zhang CN, Benz P, Karjauv A, et al., 2020. UDH: universal deep hiding for steganography, watermarking, and light field messaging. Proc 34th Conf on Neural Information Processing Systems, p.10223-10234.

[39]Zhang KA, Cuesta-Infante A, Xu L, et al., 2019. SteganoGAN: high capacity image steganography with GANs.

[40]Zhang Y, Luo XY, Yang CF, et al., 2015. A JPEG-compression resistant adaptive steganography based on relative relationship between DCT coefficients. Proc 10th Int Conf on Availability, Reliability and Security, p.461-466.

[41]Zhang Y, Luo XY, Wang JW, et al., 2021. Image robust adaptive steganography adapted to lossy channels in open social networks. Inform Sci, 564:306-326.

[42]Zhao ZZ, Guan QX, Zhang H, et al., 2019. Improving the robustness of adaptive steganographic algorithms based on transport channel matching. IEEE Trans Inform Foren Secur, 14(7):1843-1856.

[43]Zhu JR, Kaplan R, Johnson J, et al., 2018. HiDDeN: hiding data with deep networks. Proc 15th European Conf on Computer Vision, p.682-697.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE