Full Text:   <570>

Summary:  <99>

CLC number: TP393

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-12-21

Cited: 0

Clicked: 934

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chi XU

https://orcid.org/0000-0001-7389-5763

Haibin YU

https://orcid.org/0000-0002-1663-2956

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.9 P.1173-1192

http://doi.org/10.1631/FITEE.2300806


Industrial Internet for intelligent manufacturing: past, present, and future


Author(s):  Chi XU, Haibin YU, Xi JIN, Changqing XIA, Dong LI, Peng ZENG

Affiliation(s):  State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; more

Corresponding email(s):   xuchi@sia.cn, yhb@sia.cn

Key Words:  Intelligent manufacturing, Industrial Internet, Thin waist, Transparent service, Manufacturing as a service


Share this article to: More |Next Article >>>

Chi XU, Haibin YU, Xi JIN, Changqing XIA, Dong LI, Peng ZENG. Industrial Internet for intelligent manufacturing: past, present, and future[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(9): 1173-1192.

@article{title="Industrial Internet for intelligent manufacturing: past, present, and future",
author="Chi XU, Haibin YU, Xi JIN, Changqing XIA, Dong LI, Peng ZENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="9",
pages="1173-1192",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300806"
}

%0 Journal Article
%T Industrial Internet for intelligent manufacturing: past, present, and future
%A Chi XU
%A Haibin YU
%A Xi JIN
%A Changqing XIA
%A Dong LI
%A Peng ZENG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 9
%P 1173-1192
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300806

TY - JOUR
T1 - Industrial Internet for intelligent manufacturing: past, present, and future
A1 - Chi XU
A1 - Haibin YU
A1 - Xi JIN
A1 - Changqing XIA
A1 - Dong LI
A1 - Peng ZENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 9
SP - 1173
EP - 1192
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300806


Abstract: 
industrial Internet, motivated by the deep integration of new-generation information and communication technology (ICT) and advanced manufacturing technology, will open up the production chain, value chain, and industry chain by establishing complete interconnections between humans, machines, and things. This will also help establish novel manufacturing and service modes, where personalized and customized production for differentiated services is a typical paradigm of future intelligent manufacturing. Thus, there is an urgent requirement to break through the existing chimney-like service mode provided by the hierarchical heterogeneous network architecture and establish a transparent channel for manufacturing and services using a flat network architecture. Starting from the basic concepts of process manufacturing and discrete manufacturing, we first analyze the basic requirements of typical manufacturing tasks. Then, with an overview on the developing process of industrial Internet, we systematically compare the current networking technologies and further analyze the problems of the present industrial Internet. On this basis, we propose to establish a novel "thin waist" that integrates sensing, communication, computing, and control for the future industrial Internet. Furthermore, we perform a deep analysis and engage in a discussion on the key challenges and future research issues regarding the multi-dimensional collaborative sensing of task–resource, the end-to-end deterministic communication of heterogeneous networks, and virtual computing and operation control of industrial Internet.

面向智能制造的工业互联网:过去、现在与未来

许驰1,2,3,于海斌1,2,3,4,金曦1,2,3,夏长清1,2,3,李栋1,2,3,曾鹏1,2,3
1中国科学院沈阳自动化研究所机器人学国家重点实验室,中国沈阳市,110016
2中国科学院网络化控制系统重点实验室,中国沈阳市,110016
3中国科学院机器人与智能制造创新研究院,中国沈阳市,110169
4中国科学院大学,中国北京市,100049
摘要:新一代信息通信技术与先进制造技术深度融合所催生的工业互联网,通过"人、机、物"全要素互联,将全方位打通生产链、价值链和产业链,推动构建全新的制造和服务体系。其中,进行个性化定制生产,实现差异化服务是未来制造的典型范式,亟需突破现有分层异构工业网络所塑造的"烟囱式"服务架构,打造扁平化的网络新体系,构建制造与服务的透明通道。本文从流程制造和离散制造的基本概念出发,首先充分挖掘了典型制造任务的基本要求;然后,通过对工业互联网发展历程的概述,系统介绍并比较了工业互联网的网络能力现状,进一步分析了工业互联网的现存问题。在此基础上,提出建立"感知-通信-计算-控制"一体化的工业互联网"细腰"新架构。进一步地,深入分析讨论了所面临的核心挑战及未来研究方向,包括工业互联网的业务-资源多维协同感知、异构融合网络端到端确定性通信、虚拟计算与运行控制。

关键词:智能制造;工业互联网;细腰;透明服务;制造即服务

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2017. Service Requirements for the 5G System (Release 15). Technical Specification No. 22.261, 3GPP. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107 [Accessed on Apr. 16, 2023].

[2]3GPP, 2018. Study on Communication for Automation in Vertical Domains (CAV) (Release 15). Technical Report No. 22.804, 3GPP. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3187 [Accessed on Apr. 16, 2023].

[3]3GPP, 2020. Enhanced Industrial Internet of Things (IoT) and Ultra-Reliable and Low Latency Communication (URLLC) Support for NR (Release 17). RP-200799, 3GPP. https://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_88e/Docs [Accessed on Apr. 16, 2023].

[4]Afolabi I, Taleb T, Samdanis K, et al., 2018. Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tutor, 20(3):2429-2453.

[5]Aledhari M, Razzak R, Parizi RM, et al., 2020. Federated learning: a survey on enabling technologies, protocols, and applications. IEEE Access, 8:140699-140725.

[6]Andrews JG, Buzzi S, Choi W, et al., 2014. What will 5G be? IEEE J Sel Areas Commun, 32(6):1065-1082.

[7]Ansari J, Andersson C, de Bruin P, et al., 2022. Performance of 5G trials for industrial automation. Electronics, 11(3):412.

[8]Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017. Deep reinforcement learning: a brief survey. IEEE Signal Process Mag, 34(6):26-38.

[9]Beck M, 2019. On the hourglass model. Commun ACM, 62(7):48-57.

[10]Chi HR, Wu CK, Huang NF, et al., 2023. A survey of network automation for industrial Internet-of-Things toward Industry 5.0. IEEE Trans Ind Inform, 19(2):2065-2077.

[11]Chiwewe TM, Mbuya CF, Hancke GP, 2015. Using cognitive radio for interference-resistant industrial wireless sensor networks: an overview. IEEE Trans Ind Inform, 11(6):1466-1481.

[12]Cui YH, Liu F, Jing XJ, et al., 2021. Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges. IEEE Netw, 35(5):158-167.

[13]Dang SP, Amin O, Shihada B, et al., 2020. What should 6G be? Nat Electron, 3(1):20-29.

[14]Danielis P, Skodzik J, Altmann V, et al., 2014. Survey on real-time communication via Ethernet in industrial automation environments. Proc IEEE Emerging Technology and Factory Automation, p.1-8.

[15]de Donato W, Pescapé A, Dainotti A, 2014. Traffic identification engine: an open platform for traffic classification. IEEE Netw, 28(2):56-64.

[16]Dutra D, de Oliveira VC, Silva JR, 2013. Manufacturing as Service: the challenge of intelligent manufacturing. IFAC Proc Vol, 46(7):281-287.

[17]Farooq MS, Abdullah M, Riaz S, et al., 2023. A survey on the role of industrial IoT in manufacturing for implementation of smart industry. Sensors, 23(21):8958.

[18]Garg S, Kaur K, Kaddoum G, et al., 2021. SDN-NFV-aided edge-cloud interplay for 5G-envisioned energy Internet ecosystem. IEEE Netw, 35(1):356-364.

[19]General Electric, 2013. Industrial Internet: Pushing the Boundaries of Minds and Machines. https://www.ge.com/news/sites/default/files/5901.pdf [Accessed on Apr. 14, 2023].

[20]Hampel G, Li C, Li JY, 2019. 5G ultra-reliable low-latency communications in factory automation leveraging licensed and unlicensed bands. IEEE Commun Mag, 57(5):117-123.

[21]Haykin S, 2005. Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun, 23(2):201-220.

[22]Hazra A, Adhikari M, Amgoth T, et al., 2023. A comprehensive survey on interoperability for IIoT: taxonomy, standards, and future directions. ACM Comput Surv, 55(1):9.

[23]He YH, Shen JL, Xiao K, et al., 2020. A sparse protocol parsing method for IIoT protocols based on HMM hybrid model. IEEE Int Conf on Communications, p.1-6.

[24]Holfeld B, Wieruch D, Wirth T, et al., 2016. Wireless communication for factory automation: an opportunity for LTE and 5G systems. IEEE Commun Mag, 54(6):36-43.

[25]Huang VKL, Pang ZB, Chen CJA, et al., 2018. New trends in the practical deployment of industrial wireless: from noncritical to critical use cases. IEEE Ind Electron Mag, 12(2):50-58.

[26]IEC, 2010. Industrial Communication Networks—Wireless Communication Network and Communication Profile—WirelessHART. IEC 62591:2010. National Standards of Switzerland.

[27]IEC, 2011. Industrial Communication Networks—Fieldbus Specifications—WIA-PA Communication Network and Communication Profile. IEC 62601:2011. National Standards of Switzerland.

[28]IEC, 2013. Enterprise-Control System Integration—Part 1: Models and Terminology. IEC 62264:2013. International Electrotechnical Commission.

[29]IEC, 2014a. Industrial Communication Networks—Fieldbus Specifications—Part 1: Overview and Guidance for the IEC 61158 and IEC 61784 Series. IEC 61158-1:2014. National Standards of Switzerland.

[30]IEC, 2014b. Industrial Networks—Wireless Communication Network and Communication Profile—ISA100.11a. IEC 62734:2014. National Standards of Switzerland.

[31]IEC, 2017. Networks—Wireless Communication Network and Communication Profile—WIA-FA. IEC 62948:2017. National Standards of Switzerland.

[32]Jiang CX, Cong Y, Chen JM, et al., 2024. Rethinking development and major research plans of industrial Internet in China. Fundam Res, 4(1):3-7.

[33]Jin X, Xia CQ, Xu C, et al., 2023. Mixed-Criticality Industrial Wireless Networks. Springer, Singapore, p.1-9.

[34]Kim KS, Kim DK, Chae CB, et al., 2019. Ultrareliable and low-latency communication techniques for tactile Internet services. Proc IEEE, 107(2):376-393.

[35]Ksentini A, Frangoudis PA, 2020. Toward slicing-enabled multi-access edge computing in 5G. IEEE Netw, 34(2):99-105.

[36]Kusiak A, 2020. Service manufacturing = Process-as-a-Service + Manufacturing Operations-as-a-Service. J Intell Manuf, 31(1):1-2.

[37]Lei W, Soong ACK, Liu JH, et al., 2021. 5G System Design: an End to End Perspective (2nd Ed.). Springer, Cham, Germany, p.9-20.

[38]Li JQ, Yu FR, Deng GO, et al., 2017. Industrial Internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun Surv Tutor, 19(3):1504-1526.

[39]Liang W, Zhang XL, Xiao Y, et al., 2011. Survey and experiments of WIA-PA specification of industrial wireless network. Wirel Commun Mob Comput, 11(8):1197-1212.

[40]Liang YC, Zhang QQ, Larsson EG, et al., 2020. Symbiotic radio: cognitive backscattering communications for future wireless networks. IEEE Trans Cogn Commun Netw, 6(4):1242-1255.

[41]Liu XY, Xu C, Yu HB, et al., 2022. Multi-agent deep reinforcement learning for end–edge orchestrated resource allocation in industrial wireless networks. Front Inform Technol Electron Eng, 23(1):47-60.

[42]Nasrallah A, Thyagaturu AS, Alharbi Z, et al., 2019. Ultra-low latency (ULL) networks: the IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Commun Surv Tutor, 21(1):88-145.

[43]Pang ZB, Luvisotto M, Dzung D, 2017. Wireless high-performance communications: the challenges and opportunities of a new target. IEEE Ind Electron Mag, 11(3):20-25.

[44]Pop P, Raagaard ML, Gutierrez M, et al., 2018. Enabling fog computing for industrial automation through time-sensitive networking (TSN). IEEE Commun Stand Mag, 2(2):55-61.

[45]Posada J, Toro C, Barandiaran I, et al., 2015. Visual computing as a key enabling technology for Industrie 4.0 and industrial Internet. IEEE Comput Graph Appl, 35(2):26-40.

[46]Prados-Garzon J, Taleb T, 2021. Asynchronous time-sensitive networking for 5G backhauling. IEEE Netw, 35(2):144-151.

[47]Qian F, 2023. The future of smart process manufacturing. Engineering, 22(3):20-22.

[48]Qian F, Zhong WM, Du WL, 2017. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Engineering, 3(2):154-160.

[49]Qin W, Chen SQ, Peng MG, 2020. Recent advances in industrial Internet: insights and challenges. Digit Commun Netw, 6(1):1-13.

[50]Qin ZJ, Zhou XW, Zhang L, et al., 2020. 20 years of evolution from cognitive to intelligent communications. IEEE Trans Cogn Commun Netw, 6(1):6-20.

[51]Scanzio S, Wisniewski L, Gaj P, 2021. Heterogeneous and dependable networks in industry—a survey. Comput Ind, 125:103388.

[52]Seol Y, Hyeon D, Min JH, et al., 2021. Timely survey of time-sensitive networking: past and future directions. IEEE Access, 9:142506-142527.

[53]Shao YY, Xue YB, Li J, 2014. PPP: towards parallel protocol parsing. China Commun, 11(10):106-116.

[54]Trammell B, Hildebrand J, 2014. Evolving transport in the Internet. IEEE Int Comput, 18(5):60-64.

[55]University of Oulu, 2019. White Paper: Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. University of Oulu, Oulu, Finland.

[56]Verhappen I, 2016. WIA-PA and WIA-FA to Be Added to IEC Wireless Standards. https://www.controlglobal.com/network/wireless/article/11320265/wia-pa-and-wia-fa-to-be-added-to-iec-wireless-standards [Accessed on Apr. 16, 2023].

[57]Vitturi S, Tramarin F, Seno L, 2013. Industrial wireless networks: the significance of timeliness in communication systems. IEEE Ind Electron Mag, 7(2):40-51.

[58]Wang Q, Jiang J, 2016. Comparative examination on architecture and protocol of industrial wireless sensor network standards. IEEE Commun Surv Tutor, 18(3):2197-2219.

[59]Wang TR, Zhang Y, Yu HB, et al., 2012. Advanced Manufacturing Technology in China: a Roadmap to 2050. Springer Berlin, Heidelberg, Germany, p.57-60.

[60]Wollschlaeger M, Sauter T, Jasperneite J, 2017. The future of industrial communication: automation networks in the era of the Internet of Things and Industry 4.0. IEEE Ind Electron Mag, 11(1):17-27.

[61]Xu C, Zeng P, Yu HB, et al., 2021. WIA-NR: ultra-reliable low-latency communication for industrial wireless control networks over unlicensed bands. IEEE Netw, 35(1):258-265.

[62]Xu C, Yu HB, Zeng P, et al., 2023a. Towards critical industrial wireless control: prototype implementation and experimental evaluation on URLLC. IEEE Commun Mag, 61(9):193-199.

[63]Xu C, Tang ZX, Yu HB, et al., 2023b. Digital twin-driven collaborative scheduling for heterogeneous task and edge-end resource via multi-agent deep reinforcement learning. IEEE J Sel Areas Commun, 41(10):3056-3069.

[64]Xu C, Du XY, Li XC, et al., 2023c. 5G-based industrial wireless controller: protocol adaptation, prototype development, and experimental evaluation. Actuators, 12(2):49.

[65]Xu HS, Wu J, Pan QQ, et al., 2023. A survey on digital twin for industrial Internet of Things: applications, technologies and tools. IEEE Commun Surv Tutor, 25(4):2569-2598.

[66]Yang T, Yi XL, Lu SW, et al., 2021. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering, 7(9):1224-1230.

[67]Yousuf AM, Rochester EM, Ousat B, et al., 2018. Throughput, coverage and scalability of LoRa LPWAN for Internet of Things. IEEE/ACM 26th Int Symp on Quality of Service, p.1-10.

[68]Yu HB, Zeng P, Xu C, 2022. Industrial wireless control networks: from WIA to the future. Engineering, 8:18-24.

[69]Yu HB, Zeng P, Zheng M, et al., 2023. Performance Controllable Industrial Wireless Networks. Springer, Singapore, p.1-11.

[70]Zhang HK, Quan W, 2022. Networking automation and intelligence: a new era of network innovation. Engineering, 17:13-16.

[71]Zheng M, Liang W, Yu HB, et al., 2017. Performance analysis of the industrial wireless networks standard: WIA-PA. Mob Netw Appl, 22(1):139-150.

[72]Zhuang FZ, Qi ZY, Duan KY, et al., 2021. A comprehensive survey on transfer learning. Proc IEEE, 109(1):43-76.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE