Full Text:   <827>

Summary:  <26>

CLC number: TP301.6

On-line Access: 2025-05-06

Received: 2024-01-15

Revision Accepted: 2024-04-09

Crosschecked: 2025-05-06

Cited: 0

Clicked: 1320

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lijun ZHU

https://orcid.org/0009-0002-7363-3354

Kaihui LIU

https://orcid.org/0000-0001-8885-6767

Liangtian WAN

https://orcid.org/0000-0003-0574-8360

Lu SUN

https://orcid.org/0000-0001-7779-4484

Yifeng XIONG

https://orcid.org/0000-0002-4290-7116

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.4 P.588-604

http://doi.org/10.1631/FITEE.2400035


Joint active user detection and channel estimation for massive machine-type communications: a difference-of-convex optimization perspective


Author(s):  Lijun ZHU, Kaihui LIU, Liangtian WAN, Lu SUN, Yifeng XIONG

Affiliation(s):  School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   kaihuiL@outlook.com

Key Words:  Joint active user detection and channel estimation, Massive machine-type communications, Difference-of-convex function algorithm, Alternating direction multiplier method


Lijun ZHU, Kaihui LIU, Liangtian WAN, Lu SUN, Yifeng XIONG. Joint active user detection and channel estimation for massive machine-type communications: a difference-of-convex optimization perspective[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(4): 588-604.

@article{title="Joint active user detection and channel estimation for massive machine-type communications: a difference-of-convex optimization perspective",
author="Lijun ZHU, Kaihui LIU, Liangtian WAN, Lu SUN, Yifeng XIONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="4",
pages="588-604",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400035"
}

%0 Journal Article
%T Joint active user detection and channel estimation for massive machine-type communications: a difference-of-convex optimization perspective
%A Lijun ZHU
%A Kaihui LIU
%A Liangtian WAN
%A Lu SUN
%A Yifeng XIONG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 4
%P 588-604
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400035

TY - JOUR
T1 - Joint active user detection and channel estimation for massive machine-type communications: a difference-of-convex optimization perspective
A1 - Lijun ZHU
A1 - Kaihui LIU
A1 - Liangtian WAN
A1 - Lu SUN
A1 - Yifeng XIONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 4
SP - 588
EP - 604
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400035


Abstract: 
Sparsity-based joint active user detection and channel estimation (JADCE) algorithms are crucial in grant-free massive machine-type communication (mMTC) systems. The conventional compressed sensing algorithms are tailored for noncoherent communication systems, where the correlation between any two measurements is as minimal as possible. However, existing sparsity-based JADCE approaches may not achieve optimal performance in strongly coherent systems, especially with a small number of pilot subcarriers. To tackle this challenge, we formulate JADCE as a joint sparse signal recovery problem, leveraging the block-type row-sparse structure of millimeter-wave (mmWave) channels in massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Then, we propose an efficient difference-of-convex function algorithm (DCA) based JADCE algorithm with multiple measurement vector (MMV) frameworks, promoting the row-sparsity of the channel matrix. To mitigate the computational complexity further, we introduce a fast DCA-based JADCE algorithm via a proximal operator, which allows a low-complexity alternating direction multiplier method (ADMM) to resolve the optimization problem directly. Finally, simulation results demonstrate that the two proposed difference-of-convex (DC) algorithms achieve effective active user detection and accurate channel estimation compared with state-of-the-art compressed sensing based JADCE techniques.

大规模机器类型通信的联合活跃用户检测和信道估计:凸差优化视角

朱丽君1,刘开晖2,万良田3,孙璐4,熊一枫1
1北京邮电大学信息与通信工程学院,中国北京市,100876
2东莞理工学院电信工程与智能化学院,中国东莞市,523808
3大连理工大学软件学院,中国大连市,116024
4大连海事大学信息科学技术学院,中国大连市,116026
摘要:在免授权的大规模机器类型通信(mMTC)系统中,基于稀疏的联合活跃用户检测和信道估计(JADCE)算法至关重要。传统的压缩感知算法适用于非相干通信系统,其中任意两个测量之间的相关性尽可能小。然而,现有的基于稀疏的JADCE方法在强相干系统中可能无法达到最佳性能,尤其是在少量导频子载波的情况下。为解决这一问题,通过利用大规模多输入多输出正交频分复用(MIMO-OFDM)系统中毫米波信道的块状行稀疏结构,我们将JADCE建模为一个基于多测量向量(MMV)框架的联合稀疏信号恢复问题。然后,从凸差(DC)优化视角提出一种基于凸差算法(DCA)的高效JADCE方法。为进一步降低算法的计算复杂度,引入一种近端算子实现了基于DCA的快速JADCE算法,该算法采用低复杂度的交替方向乘子法(ADMM)直接解决优化问题。仿真实验结果表明,与现有基于压缩感知的JADCE方法相比,本文所提出的两种凸差算法实现了有效的活跃用户检测和精确的信道估计。

关键词:联合活跃用户检测和信道估计;大规模机器类型通信;凸差函数算法;交替方向乘子法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alkhateeb A, El Ayach O, Leus G, et al., 2014. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 8(5):831-846.

[2]Bian XY, Mao YY, Zhang J, 2023. Joint activity detection, channel estimation, and data decoding for grant-free massive random access. IEEE Int Things J, 10(16):14042-14057.

[3]Bian XY, Mao YY, Zhang J, 2024. Joint activity-delay detection and channel estimation for asynchronous massive random access: a free probability theory approach. https://arxiv.org/abs/2402.17996

[4]Boyd S, Parikh N, Chu E, et al., 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 3(1):1-122.

[5]Chukhno N, Chukhno O, Moltchanov D, et al., 2024. Models, methods, and solutions for multicasting in 5G/6G mmWave and sub-THz systems. IEEE Commun Surv Tutor, 26(1):119-159.

[6]Cui Y, Li SC, Zhang WQ, 2021. Jointly sparse signal recovery and support recovery via deep learning with applications in MIMO-based grant-free random access. IEEE J Sel Areas Commun, 39(3):788-803.

[7]Djelouat H, Leinonen M, Juntti M, 2022. Spatial correlation aware compressed sensing for user activity detection and channel estimation in massive MTC. IEEE Trans Wirel Commun, 21(8):6402-6416.

[8]Gan X, Zhong CJ, Huang CW, et al., 2021. RIS-assisted multi-user MISO communications exploiting statistical CSI. IEEE Trans Commun, 69(10):6781-6792.

[9]Gao Z, Dai LL, Wang ZC, et al., 2015. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans Signal Process, 63(23):6169-6183.

[10]Gao Z, Ke ML, Mei YK, et al., 2024. Compressive sensing-based grant-free massive access for 6G massive communication. IEEE Int Things J, 11(5):7411-7435.

[11]Ge HM, Li P, 2022. The Dantzig selector: recovery of signal via l1−αl2 minimization. Inv Probl, 38(1):015006.

[12]Guo MQ, Gursoy MC, 2023. Joint activity detection and channel estimation for intelligent-reflecting-surface-assisted wireless IoT networks. IEEE Int Things J, 10(12):10207-10221.

[13]Guo YR, Liu ZJ, Sun YJ, 2024. Low-complexity joint activity detection and channel estimation with partially orthogonal pilot for asynchronous massive access. IEEE Int Things J, 11(1):1773-1783.

[14]Ke ML, Gao Z, Wu YP, et al., 2020. Compressive sensing-based adaptive active user detection and channel estimation: massive access meets massive MIMO. IEEE Trans Signal Process, 68:764-779.

[15]Li S, Xiao LX, Jiang T, 2021. An efficient matching pursuit based compressive sensing detector for uplink grant-free NOMA. IEEE Trans Veh Technol, 70(2):2012-2017.

[16]Li Y, Chen SY, Meng WX, et al., 2024. Correlation aided joint activity detection and channel estimation for multi-device collaborative massive access. IEEE Int Things J, 11(10):18394-18409.

[17]Liu KH, Li XJ, Fang J, et al., 2019. Bayesian mmWave channel estimation via exploiting joint sparse and low-rank structures. IEEE Access, 7:48961-48970.

[18]Liu KH, Wan LT, Sun L, 2022. Fast quadratic sensing via nonconvex optimization. Proc 30th European Signal Processing Conf, p.2211-2215.

[19]Liu KH, Li XN, Zhao HY, et al., 2023. Joint active user detection and channel estimation for massive grant-free access via difference of convex programming. Proc IEEE Global Communications Conf, p.2335-2340.

[20]Liu L, Yu W, 2018. Massive connectivity with massive MIMO–part I: device activity detection and channel estimation. IEEE Trans Signal Process, 66(11):2933-2946.

[21]Lou YF, Yan M, 2018. Fast L1-L2 minimization via a proximal operator. J Sci Comput, 74(2):767-785.

[22]Lou YF, Yin PH, He Q, et al., 2015. Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2. J Sci Comput, 64(1):178-196.

[23]Lu HT, Long XZ, Lv JY, 2011. A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods. Proc 14th Int Conf on Artificial Intelligence and Statistics, p.461-469.

[24]Ma Z, Wu W, Gao FF, et al., 2024. Model-driven deep learning for non-coherent massive machine-type communications. IEEE Trans Wirel Commun, 23(3):2197-2211.

[25]Marata L, López OLA, Hauptmann A, et al., 2023. Joint activity detection and channel estimation for clustered massive machine type communications. IEEE Trans Wirel Commun, 23(6):5473-5487.

[26]Mei YK, Gao Z, Mi D, et al., 2023. Massive access in extra large-scale MIMO with mixed-ADC over near-field channels. IEEE Trans Veh Technol, 72(9):12373-12378.

[27]Petersen KB, Pedersen MS, 2012. The Matrix Cookbook. http://www2.imm.dtu.dk/pubdb/edoc/imm3274.pdf

[28]Qiao L, Zhang J, Gao Z, et al., 2022. Joint activity and blind information detection for UAV-assisted massive IoT access. IEEE J Sel Areas Commun, 40(5):1489-1508.

[29]Rajoriya A, Budhiraja R, 2023. Joint AMP-SBL algorithms for device activity detection and channel estimation in massive MIMO mMTC systems. IEEE Trans Commun, 71(4):2136-2152.

[30]Shao XD, Chen XM, Jia RD, 2020. A dimension reduction-based joint activity detection and channel estimation algorithm for massive access. IEEE Trans Signal Process, 68:420-435.

[31]Tang ZH, Wang J, Wang JT, et al., 2020. Device activity detection and non-coherent information transmission for massive machine-type communications. IEEE Access, 8:41452-41465.

[32]Tong X, Zhang ZY, Wang J, et al., 2021. Joint multi-user communication and sensing exploiting both signal and environment sparsity. IEEE J Sel Top Signal Process, 15(6):1409-1422.

[33]Wan LT, Liu KH, Zhang W, 2022. Deep learning-aided off-grid channel estimation for millimeter wave cellular systems. IEEE Trans Wirel Commun, 21(5):3333-3348.

[34]Wang BC, Dai LL, Mir T, et al., 2016. Joint user activity and data detection based on structured compressive sensing for NOMA. IEEE Commun Lett, 20(7):1473-1476.

[35]Wang W, Zhang W, Li YJ, et al., 2018. Channel estimation and hybrid precoding for multi-panel millimeter wave MIMO. Proc IEEE Int Conf on Communications, p.1-6.

[36]Wei L, Huang CW, Guo QH, et al., 2022. Joint channel estimation and signal recovery for RIS-empowered multiuser communications. IEEE Trans Commun, 70(7):4640-4655.

[37]Xiu HL, Gao Z, Liao AW, et al., 2023. Joint activity detection and channel estimation for massive IoT access based on millimeter-wave/terahertz multi-panel massive MIMO. IEEE Trans Veh Technol, 72(1):1349-1354.

[38]Yin PH, Lou YF, He Q, et al., 2015. Minimization of l1−2 for compressed sensing. SIAM J Sci Comput, 37(1):A536-A563.

[39]Ying KK, Gao Z, Chen S, et al., 2023. Quasi-synchronous random access for massive MIMO-based LEO satellite constellations. IEEE J Sel Areas Commun, 41(6):1702-1722.

[40]Yu KW, Shen M, Wang R, et al., 2020. Joint nuclear norm and l1−2-regularization sparse channel estimation for mmWave massive MIMO systems. IEEE Access, 8:155409-155416.

[41]Zhang XX, Labeau F, Hao L, et al., 2021. Joint active user detection and channel estimation via Bayesian learning approaches in MTC communications. IEEE Trans Veh Technol, 70(6):6222-6226.

[42]Zhang XX, Fan PZ, Hao L, et al., 2023. Generalized approximate message passing based Bayesian learning detectors for uplink grant-free NOMA. IEEE Trans Veh Technol, 72(11):15057-15061.

[43]Zhang YY, Guo QH, Wang ZY, et al., 2018. Block sparse Bayesian learning based joint user activity detection and channel estimation for grant-free NOMA systems. IEEE Trans Veh Technol, 67(10):9631-9640.

[44]Zhang ZJ, Li Y, Huang CW, et al., 2019. DNN-aided block sparse Bayesian learning for user activity detection and channel estimation in grant-free non-orthogonal random access. IEEE Trans Veh Technol, 68(12):12000-12012.

[45]Zhang ZJ, Guo QH, Li Y, et al., 2023. Variational Bayesian inference clustering-based joint user activity and data detection for grant-free random access in mMTC. IEEE Int Things J, 10(11):9906-9916.

[46]Zheng ST, Wu S, Jia HG, et al., 2024. Hybrid driven learning for joint activity detection and channel estimation in IRS-assisted massive connectivity. IEEE Trans Wirel Commun, 23(9):10834-10849.

[47]Zhu LJ, Liu KH, Wan LT, et al., 2023. Active user detection and channel estimation via fast ADMM. Proc IEEE Wireless Communications and Networking Conf, p.1-6.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE