Full Text:   <868>

Summary:  <215>

Suppl. Mater.: 

CLC number: TP391.4

On-line Access: 2025-06-04

Received: 2024-09-03

Revision Accepted: 2025-01-24

Crosschecked: 2025-09-04

Cited: 0

Clicked: 904

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi LI

https://orcid.org/0000-0001-9813-4979

Maokun ZHENG

https://orcid.org/0009-0008-7777-0042

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.8 P.1305-1323

http://doi.org/10.1631/FITEE.2400766


Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images


Author(s):  Maokun ZHENG, Zhi LI, Long ZHENG, Weidong WANG, Dandan LI, Guomei WANG

Affiliation(s):  State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

Corresponding email(s):   13793015018@163.com, zhili@gzu.edu.cn, zhenglong178@163.com, 13051099799@163.com

Key Words:  Diffusion tensor imaging, Diffusion tractography, Deep learning, Fast diffusion tensor estimation, Q-space-coordinate information


Maokun ZHENG, Zhi LI, Long ZHENG, Weidong WANG, Dandan LI, Guomei WANG. Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(8): 1305-1323.

@article{title="Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images",
author="Maokun ZHENG, Zhi LI, Long ZHENG, Weidong WANG, Dandan LI, Guomei WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="8",
pages="1305-1323",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400766"
}

%0 Journal Article
%T Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images
%A Maokun ZHENG
%A Zhi LI
%A Long ZHENG
%A Weidong WANG
%A Dandan LI
%A Guomei WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 8
%P 1305-1323
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400766

TY - JOUR
T1 - Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images
A1 - Maokun ZHENG
A1 - Zhi LI
A1 - Long ZHENG
A1 - Weidong WANG
A1 - Dandan LI
A1 - Guomei WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 8
SP - 1305
EP - 1323
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400766


Abstract: 
diffusion tensor imaging (DTI) is a widely used imaging technique for mapping living human brain tissue’s microstructure and structural connectivity. Recently, deep learning methods have been proposed to rapidly estimate diffusion tensors (DTs) using only a small quantity of diffusion-weighted (DW) images. However, these methods typically use the DW images obtained with fixed q-space sampling schemes as the training data, limiting the application scenarios of such methods. To address this issue, we develop a new deep neural network called q-space-coordinate-guided diffusion tensor imaging (QCG-DTI), which can efficiently and correctly estimate DTs under flexible q-space sampling schemes. First, we propose a q-space-coordinate-embedded feature consistency strategy to ensure the correspondence between q-space-coordinates and their respective DW images. Second, a q-space-coordinate fusion (QCF) module is introduced which efficiently embeds q-space-coordinates into multiscale features of the corresponding DW images by linearly adjusting the feature maps along the channel dimension, thus eliminating the dependence on fixed diffusion sampling schemes. Finally, a multiscale feature residual dense (MRD) module is proposed which enhances the network's feature extraction and image reconstruction capabilities by using dual-branch convolutions with different kernel sizes to extract features at different scales. Compared to state-of-the-art methods that rely on a fixed sampling scheme, the proposed network can obtain high-quality diffusion tensors and derived parameters even using DW images acquired with flexible q-space sampling schemes. Compared to state-of-the-art deep learning methods, QCG-DTI reduces the mean absolute error by approximately 15% on fractional anisotropy and around 25% on mean diffusivity.

Q空间坐标引导的神经网络从最小数量扩散加权图像中实现高保真扩散张量估计

郑茂坤,李智,郑龙,王卫东,李丹丹,王国美
贵州大学计算机科学与技术学院公共大数据国家重点实验室,中国贵阳市,550025
摘要:扩散张量成像(DTI)是一种广泛应用于绘制活体人脑组织微观结构和结构连接的成像方法。最近,学者提出多种仅用少量扩散加权(DW)图像快速估计扩散张量的深度学习方法。然而,这些方法通常使用固定q空间采样方案获取的DW图像作为训练数据,从而限制了其应用场景。为解决这一问题,我们开发了一种新的深度神经网络,称作QCG-DTI,能够在灵活的q空间采样方案条件下,实现高效、准确的扩散张量估计。首先,提出一个q空间坐标嵌入特征一致性策略,保证q空间坐标与其相应的DW图像之间的对应关系。在此基础上,提出一个q空间坐标融合(QCF)模块,该模块通过线性调节特征图的方式,将q空间坐标高效嵌入到相应DW图像的多尺度特征中,从而消除对固定扩散采样方案的依赖。最后,提出一个多尺度特征残差密集(MRD)模块,通过使用不同核大小的双分支卷积提取不同尺度的特征,以此提升特征提取和图像重建能力。与依赖于固定采样方案的最先进方法相比,所提网络即使在使用灵活q空间采样方案获取的DW图像情况下,也能获得高质量扩散张量及其衍生参数。与最先进的使用深度学习方法相比,QCG-DTI在分数各向异性指标上将平均绝对误差降低约15%,在平均扩散率指标上降低约25%。

关键词:扩散张量成像;扩散纤维束成像;深度学习;快速扩散张量估计;Q空间坐标信息

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alexander AL, Lee JE, Lazar M, et al., 2007. Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3):316-329.

[2]Aliotta E, Nourzadeh H, Sanders J, et al., 2019. Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks. Med Phys, 46(4):1581-1591.

[3]Barnea-Goraly N, Kwon H, Menon V, et al., 2004. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiat, 55(3):323-326.

[4]Barnea-Goraly N, Menon V, Eckert M, et al., 2005. White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cort, 15(12):1848-1854.

[5]Basser PJ, Pajevic S, Pierpaoli C, et al., 2000. In vivo fiber tractography using DT-MRI data. Magn Reson Med, 44(4):625-632.

[6]Bastiani M, Andersson JLR, Cordero-Grande L, et al., 2019. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. NeuroImage, 185:750-763.

[7]Caruyer E, Lenglet C, Sapiro G, et al., 2013. Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn Reson Med, 69(6):1534-1540.

[8]Chen YW, Li JL, Lu QQ, et al., 2025. Spherical harmonics-based deep learning achieves generalized and accurate diffusion tensor imaging. IEEE J Biomed Health Inform, 29(1):456-461.

[9]Dale AM, Fischl B, Sereno MI, 1999. Cortical surface-based analysis: I. segmentation and surface reconstruction. NeuroImage, 9(2):179-194.

[10]de Almeida Martins JP, Nilsson M, Lampinen B, et al., 2021. Neural networks for parameter estimation in microstructural MRI: application to a diffusion-relaxation model of white matter. NeuroImage, 244:118601.

[11]Donald Tournier J, Calamante F, Connelly A, 2012. MRtrix: diffusion tractography in crossing fiber regions. Int J Imag Syst Technol, 22(1):53-66.

[12]Elam JS, Glasser MF, Harms MP, et al., 2021. The Human Connectome Project: a retrospective. NeuroImage, 244:118543.

[13]Eriksson SH, Rugg-Gunn FJ, Symms MR, et al., 2001. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain, 124(3):617-626.

[14]Fischl B, 2012. FreeSurfer. NeuroImage, 62(2):774-781.

[15]Fischl B, Sereno MI, Dale AM, 1999. Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2):195-207.

[16]Garyfallidis E, Brett M, Amirbekian B, et al., 2014. Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform, 8:8.

[17]Gibbons EK, Hodgson KK, Chaudhari AS, et al., 2019. Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning. Magn Reson Med, 81(4):2399-2411.

[18]Golkov V, Dosovitskiy A, Sperl JI, et al., 2016. q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imag, 35(5):1344-1351.

[19]Ha S, Lyu I, 2022. SPHARM-Net: spherical harmonics- based convolution for cortical parcellation. IEEE Trans Med Imag, 41(10):2739-2751.

[20]Jones DK, 2004. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med, 51(4):807-815.

[21]Jones DK, 2009. Chapter 3 - Gaussian modeling of the diffusion signal. In: Johansen-Berg H, Behrens TEJ (Eds.), Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy. Elsevier, Amsterdam, the Netherlands, p.37-54.

[22]Jones DK, Horsfield MA, Simmons A, 1999. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med, 42(3):515-525.

[23]Jones DK, Knösche TR, Turner R, 2013. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage, 73:239-254.

[24]Karimi D, Gholipour A, 2022. Diffusion tensor estimation with Transformer neural networks. Artif Intell Med, 130:102330.

[25]Kingma DP, Ba LJ, 2015. Adam: a method for stochastic optimization. Int Conf on Learning Representations, Article 13.

[26]Koppers S, Friedrichs M, Merhof D, 2017. Reconstruction of diffusion anisotropies using 3D deep convolutional neural networks in diffusion imaging. In: Schultz T, Özarslan E, Hotz I (Eds.), Modeling, Analysis, and Visualization of Anisotropy. Springer, Cham, Switzerland, p.393-404.

[27]Lebel C, Walker L, Leemans A, et al., 2008. Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3):1044-1055.

[28]Le Bihan D, Mangin JF, Poupon C, et al., 2001. Diffusion tensor imaging: concepts and applications. J Magn Reson Imag, 13(4):534-546.

[29]Li HY, Liang ZF, Zhang CY, et al., 2021. SuperDTI: ultrafast DTI and fiber tractography with deep learning. Magn Reson Med, 86(6):3334-3347.

[30]Li ZW, Gong T, Lin ZC, et al., 2019. Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network. IEEE Access, 7:71398-71411.

[31]Lin ZC, Gong T, Wang KW, et al., 2019. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med Phys, 46(7):3101-3116.

[32]Liu YN, Wang CP, Lu MY, et al., 2024. From simple to complex scenes: learning robust feature representations for accurate human parsing. IEEE Trans Patt Anal Mach Intell, 46(8):5449-5462.

[33]Mori S, Crain BJ, Chacko VP, et al., 1999. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 45(2):265-269.

[34]Nath V, Schilling KG, Parvathaneni P, et al., 2019. Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magn Reson Imag, 62:220-227.

[35]Park J, Jung W, Choi EJ, et al., 2022. DIFFnet: diffusion parameter mapping network generalized for input diffusion gradient schemes and b-value. IEEE Trans Med Imag, 41(2):491-499.

[36]Pierpaoli C, Jezzard P, Basser PJ, et al., 1996. Diffusion tensor MR imaging of the human brain. Radiology, 201(3):637-648.

[37]Poulin P, Côté MA, Houde JC, et al., 2017. Learn to track: deep learning for tractography. In: Descoteaux M, Maier-Hein L, Franz A, et al. (Eds.), Medical Image Computing and Computer Assisted Intervention—MICCAI 2017. Springer, Cham, Switzerland, p.540-547.

[38]Roosendaal SD, Geurts JJG, Vrenken H, et al., 2009. Regional DTI differences in multiple sclerosis patients. NeuroImage, 44(4):1397-1403.

[39]Skare S, Hedehus M, Moseley ME, et al., 2000. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson, 147(2):340-352.

[40]Stejskal EO, Tanner JE, 1965. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys, 42(1):288-292.

[41]Sutskever I, Vinyals O, Le QV, 2014. Sequence to sequence learning with neural networks. Proc 28th Int Conf on Neural Information Processing Systems, p.3104-3112.

[42]Tian QY, Bilgic B, Fan QY, et al., 2020. DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning. NeuroImage, 219:117017.

[43]Tong QQ, He HJ, Gong T, et al., 2019. Reproducibility of multi-shell diffusion tractography on traveling subjects: a multicenter study prospective. Magn Reson Imag, 59:1-9.

[44]Tong QQ, Gong T, He HJ, et al., 2020. A deep learning-based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols. Magn Reson Imag, 73:31-44.

[45]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010.

[46]Wang CP, Ma B, Xia ZQ, et al., 2022a. Stereoscopic image description with trinion fractional-order continu- ous orthogonal moments. IEEE Trans Circ Syst Video Technol, 32(4):1998-2012.

[47]Wang CP, Hao QX, Xu SJ, et al., 2022b. RD-IWAN: residual dense based imperceptible watermark attack network. IEEE Trans Circ Syst Video Technol, 32(11):7460-7472.

[48]Westin CF, Maier SE, Mamata H, et al., 2002. Processing and visualization for diffusion tensor MRI. Med Image Anal, 6(2):93-108.

[49]Wu YC, Alexander AL, 2007. Hybrid diffusion imaging. NeuroImage, 36(3):617-629.

[50]Wu ZJ, Wang JC, Chen ZQ, et al., 2024. FlexDTI: flexible diffusion gradient encoding scheme-based highly efficient diffusion tensor imaging using deep learning. Phys Med Biol, 69(11):115012.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE