CLC number: TP391.4
On-line Access: 2025-06-04
Received: 2024-09-03
Revision Accepted: 2025-01-24
Crosschecked: 2025-09-04
Cited: 0
Clicked: 904
Citations: Bibtex RefMan EndNote GB/T7714
Maokun ZHENG, Zhi LI, Long ZHENG, Weidong WANG, Dandan LI, Guomei WANG. Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(8): 1305-1323.
@article{title="Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images",
author="Maokun ZHENG, Zhi LI, Long ZHENG, Weidong WANG, Dandan LI, Guomei WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="8",
pages="1305-1323",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400766"
}
%0 Journal Article
%T Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images
%A Maokun ZHENG
%A Zhi LI
%A Long ZHENG
%A Weidong WANG
%A Dandan LI
%A Guomei WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 8
%P 1305-1323
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400766
TY - JOUR
T1 - Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images
A1 - Maokun ZHENG
A1 - Zhi LI
A1 - Long ZHENG
A1 - Weidong WANG
A1 - Dandan LI
A1 - Guomei WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 8
SP - 1305
EP - 1323
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400766
Abstract: diffusion tensor imaging (DTI) is a widely used imaging technique for mapping living human brain tissue’s microstructure and structural connectivity. Recently, deep learning methods have been proposed to rapidly estimate diffusion tensors (DTs) using only a small quantity of diffusion-weighted (DW) images. However, these methods typically use the DW images obtained with fixed q-space sampling schemes as the training data, limiting the application scenarios of such methods. To address this issue, we develop a new deep neural network called q-space-coordinate-guided diffusion tensor imaging (QCG-DTI), which can efficiently and correctly estimate DTs under flexible q-space sampling schemes. First, we propose a q-space-coordinate-embedded feature consistency strategy to ensure the correspondence between q-space-coordinates and their respective DW images. Second, a q-space-coordinate fusion (QCF) module is introduced which efficiently embeds q-space-coordinates into multiscale features of the corresponding DW images by linearly adjusting the feature maps along the channel dimension, thus eliminating the dependence on fixed diffusion sampling schemes. Finally, a multiscale feature residual dense (MRD) module is proposed which enhances the network's feature extraction and image reconstruction capabilities by using dual-branch convolutions with different kernel sizes to extract features at different scales. Compared to state-of-the-art methods that rely on a fixed sampling scheme, the proposed network can obtain high-quality diffusion tensors and derived parameters even using DW images acquired with flexible q-space sampling schemes. Compared to state-of-the-art deep learning methods, QCG-DTI reduces the mean absolute error by approximately 15% on fractional anisotropy and around 25% on mean diffusivity.
[1]Alexander AL, Lee JE, Lazar M, et al., 2007. Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3):316-329.
[2]Aliotta E, Nourzadeh H, Sanders J, et al., 2019. Highly accelerated, model-free diffusion tensor MRI reconstruction using neural networks. Med Phys, 46(4):1581-1591.
[3]Barnea-Goraly N, Kwon H, Menon V, et al., 2004. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiat, 55(3):323-326.
[4]Barnea-Goraly N, Menon V, Eckert M, et al., 2005. White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cort, 15(12):1848-1854.
[5]Basser PJ, Pajevic S, Pierpaoli C, et al., 2000. In vivo fiber tractography using DT-MRI data. Magn Reson Med, 44(4):625-632.
[6]Bastiani M, Andersson JLR, Cordero-Grande L, et al., 2019. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. NeuroImage, 185:750-763.
[7]Caruyer E, Lenglet C, Sapiro G, et al., 2013. Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn Reson Med, 69(6):1534-1540.
[8]Chen YW, Li JL, Lu QQ, et al., 2025. Spherical harmonics-based deep learning achieves generalized and accurate diffusion tensor imaging. IEEE J Biomed Health Inform, 29(1):456-461.
[9]Dale AM, Fischl B, Sereno MI, 1999. Cortical surface-based analysis: I. segmentation and surface reconstruction. NeuroImage, 9(2):179-194.
[10]de Almeida Martins JP, Nilsson M, Lampinen B, et al., 2021. Neural networks for parameter estimation in microstructural MRI: application to a diffusion-relaxation model of white matter. NeuroImage, 244:118601.
[11]Donald Tournier J, Calamante F, Connelly A, 2012. MRtrix: diffusion tractography in crossing fiber regions. Int J Imag Syst Technol, 22(1):53-66.
[12]Elam JS, Glasser MF, Harms MP, et al., 2021. The Human Connectome Project: a retrospective. NeuroImage, 244:118543.
[13]Eriksson SH, Rugg-Gunn FJ, Symms MR, et al., 2001. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain, 124(3):617-626.
[14]Fischl B, 2012. FreeSurfer. NeuroImage, 62(2):774-781.
[15]Fischl B, Sereno MI, Dale AM, 1999. Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2):195-207.
[16]Garyfallidis E, Brett M, Amirbekian B, et al., 2014. Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform, 8:8.
[17]Gibbons EK, Hodgson KK, Chaudhari AS, et al., 2019. Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning. Magn Reson Med, 81(4):2399-2411.
[18]Golkov V, Dosovitskiy A, Sperl JI, et al., 2016. q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imag, 35(5):1344-1351.
[19]Ha S, Lyu I, 2022. SPHARM-Net: spherical harmonics- based convolution for cortical parcellation. IEEE Trans Med Imag, 41(10):2739-2751.
[20]Jones DK, 2004. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med, 51(4):807-815.
[21]Jones DK, 2009. Chapter 3 - Gaussian modeling of the diffusion signal. In: Johansen-Berg H, Behrens TEJ (Eds.), Diffusion MRI: from Quantitative Measurement to in vivo Neuroanatomy. Elsevier, Amsterdam, the Netherlands, p.37-54.
[22]Jones DK, Horsfield MA, Simmons A, 1999. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med, 42(3):515-525.
[23]Jones DK, Knösche TR, Turner R, 2013. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage, 73:239-254.
[24]Karimi D, Gholipour A, 2022. Diffusion tensor estimation with Transformer neural networks. Artif Intell Med, 130:102330.
[25]Kingma DP, Ba LJ, 2015. Adam: a method for stochastic optimization. Int Conf on Learning Representations, Article 13.
[26]Koppers S, Friedrichs M, Merhof D, 2017. Reconstruction of diffusion anisotropies using 3D deep convolutional neural networks in diffusion imaging. In: Schultz T, Özarslan E, Hotz I (Eds.), Modeling, Analysis, and Visualization of Anisotropy. Springer, Cham, Switzerland, p.393-404.
[27]Lebel C, Walker L, Leemans A, et al., 2008. Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3):1044-1055.
[28]Le Bihan D, Mangin JF, Poupon C, et al., 2001. Diffusion tensor imaging: concepts and applications. J Magn Reson Imag, 13(4):534-546.
[29]Li HY, Liang ZF, Zhang CY, et al., 2021. SuperDTI: ultrafast DTI and fiber tractography with deep learning. Magn Reson Med, 86(6):3334-3347.
[30]Li ZW, Gong T, Lin ZC, et al., 2019. Fast and robust diffusion kurtosis parametric mapping using a three-dimensional convolutional neural network. IEEE Access, 7:71398-71411.
[31]Lin ZC, Gong T, Wang KW, et al., 2019. Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med Phys, 46(7):3101-3116.
[32]Liu YN, Wang CP, Lu MY, et al., 2024. From simple to complex scenes: learning robust feature representations for accurate human parsing. IEEE Trans Patt Anal Mach Intell, 46(8):5449-5462.
[33]Mori S, Crain BJ, Chacko VP, et al., 1999. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 45(2):265-269.
[34]Nath V, Schilling KG, Parvathaneni P, et al., 2019. Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magn Reson Imag, 62:220-227.
[35]Park J, Jung W, Choi EJ, et al., 2022. DIFFnet: diffusion parameter mapping network generalized for input diffusion gradient schemes and b-value. IEEE Trans Med Imag, 41(2):491-499.
[36]Pierpaoli C, Jezzard P, Basser PJ, et al., 1996. Diffusion tensor MR imaging of the human brain. Radiology, 201(3):637-648.
[37]Poulin P, Côté MA, Houde JC, et al., 2017. Learn to track: deep learning for tractography. In: Descoteaux M, Maier-Hein L, Franz A, et al. (Eds.), Medical Image Computing and Computer Assisted Intervention—MICCAI 2017. Springer, Cham, Switzerland, p.540-547.
[38]Roosendaal SD, Geurts JJG, Vrenken H, et al., 2009. Regional DTI differences in multiple sclerosis patients. NeuroImage, 44(4):1397-1403.
[39]Skare S, Hedehus M, Moseley ME, et al., 2000. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson, 147(2):340-352.
[40]Stejskal EO, Tanner JE, 1965. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys, 42(1):288-292.
[41]Sutskever I, Vinyals O, Le QV, 2014. Sequence to sequence learning with neural networks. Proc 28th Int Conf on Neural Information Processing Systems, p.3104-3112.
[42]Tian QY, Bilgic B, Fan QY, et al., 2020. DeepDTI: high-fidelity six-direction diffusion tensor imaging using deep learning. NeuroImage, 219:117017.
[43]Tong QQ, He HJ, Gong T, et al., 2019. Reproducibility of multi-shell diffusion tractography on traveling subjects: a multicenter study prospective. Magn Reson Imag, 59:1-9.
[44]Tong QQ, Gong T, He HJ, et al., 2020. A deep learning-based method for improving reliability of multicenter diffusion kurtosis imaging with varied acquisition protocols. Magn Reson Imag, 73:31-44.
[45]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010.
[46]Wang CP, Ma B, Xia ZQ, et al., 2022a. Stereoscopic image description with trinion fractional-order continu- ous orthogonal moments. IEEE Trans Circ Syst Video Technol, 32(4):1998-2012.
[47]Wang CP, Hao QX, Xu SJ, et al., 2022b. RD-IWAN: residual dense based imperceptible watermark attack network. IEEE Trans Circ Syst Video Technol, 32(11):7460-7472.
[48]Westin CF, Maier SE, Mamata H, et al., 2002. Processing and visualization for diffusion tensor MRI. Med Image Anal, 6(2):93-108.
[49]Wu YC, Alexander AL, 2007. Hybrid diffusion imaging. NeuroImage, 36(3):617-629.
[50]Wu ZJ, Wang JC, Chen ZQ, et al., 2024. FlexDTI: flexible diffusion gradient encoding scheme-based highly efficient diffusion tensor imaging using deep learning. Phys Med Biol, 69(11):115012.
Open peer comments: Debate/Discuss/Question/Opinion
<1>