Full Text:   <130>

CLC number: TN407

On-line Access: 2025-11-17

Received: 2024-12-26

Revision Accepted: 2025-06-24

Crosschecked: 2025-11-18

Cited: 0

Clicked: 355

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hadi JAHANIRAD

https://orcid.org/0000-0001-8586-6281

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.10 P.2041-2063

http://doi.org/10.1631/FITEE.2401094


Effective fault detection in M3D ICs: a cluster-based BIST for enhanced inter-layer via fault coverage


Author(s):  Hadi JAHANIRAD, Ahmad MENBARI, Hemin RAHIMI, Daniel ZIENER

Affiliation(s):  Department of Electronics and Communication Engineering, University of Kurdistan, Sanandaj 90210, Iran; more

Corresponding email(s):   E-mail: h.jahanirad@uok.ac.ir, ahmad.menbari@tu-ilmenau.de, hemn.rahimi@uok.ac.ir, daniel.ziener@tu-ilmenau.de

Key Words:  Monolithic three-dimensional integrated circuits (M3D ICs), Inter-layer vias (ILVs), Built-in self-test (BIST), Fault detection and localization


Hadi JAHANIRAD, Ahmad MENBARI, Hemin RAHIMI, Daniel ZIENER. Effective fault detection in M3D ICs: a cluster-based BIST for enhanced inter-layer via fault coverage[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 2041-2063.

@article{title="Effective fault detection in M3D ICs: a cluster-based BIST for enhanced inter-layer via fault coverage",
author="Hadi JAHANIRAD, Ahmad MENBARI, Hemin RAHIMI, Daniel ZIENER",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="2041-2063",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2401094"
}

%0 Journal Article
%T Effective fault detection in M3D ICs: a cluster-based BIST for enhanced inter-layer via fault coverage
%A Hadi JAHANIRAD
%A Ahmad MENBARI
%A Hemin RAHIMI
%A Daniel ZIENER
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 2041-2063
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2401094

TY - JOUR
T1 - Effective fault detection in M3D ICs: a cluster-based BIST for enhanced inter-layer via fault coverage
A1 - Hadi JAHANIRAD
A1 - Ahmad MENBARI
A1 - Hemin RAHIMI
A1 - Daniel ZIENER
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 2041
EP - 2063
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2401094


Abstract: 
monolithic three-dimensional integrated circuits (M3D ICs) have emerged as an innovative solution to overcome the limitations of traditional 2D scaling, offering improved performance, reduced power consumption, and enhanced functionality. inter-layer vias (ILVs), crucial components of M3D ICs, provide vertical connectivity between layers but are susceptible to manufacturing and operational defects, such as stuck-at faults (SAFs), shorts, and opens, which can compromise system reliability. These challenges necessitate advanced built-in self-test (BIST) methodologies to ensure robust fault detection and localization while minimizing the testing overhead. In this paper, we introduce a novel BIST architecture tailored to efficiently detect ILV defects, particularly in irregularly positioned ILVs, and approximately localize them within clusters, using a walking pattern approach. In the proposed BIST framework, ILVs are grouped according to the probability of fault occurrence, enabling efficient detection of all SAFs and bridging faults (BFs) and most multiple faults within each cluster. This strategy empowers designers to fine-tune fault coverage, localization precision, and test duration to meet specific design requirements. The new BIST method addresses a critical shortcoming of existing solutions by significantly reducing the number of test configurations and overall test time using multiple ILV clusters. The method also enhances efficiency in terms of area and hardware utilization, particularly for larger circuit benchmarks. For instance, in the LU32PEENG benchmark, where ILVs are divided into 64 clusters, the power, area, and hardware overheads are minimized to 0.82%, 1.03%, and 1.14%, respectively.

单片三维集成电路高效故障检测方法基于簇的内建自测以提升层间通孔故障覆盖率

Hadi JAHANIRAD1, Ahmad MENBARI2,Hemin RAHIMI1, Daniel ZIENER2
1库尔德斯坦大学电子与通信工程系,伊朗萨南达季市,90210
2伊尔默瑙工业大学计算机体系结构与嵌入式系统系,德国伊尔默瑙市,98693
摘要:单片三维集成电路(M3D IC)作为克服传统二维器件缩放限制的一种创新解决方案,能够提升性能、降低功耗、增强功能。作为M3D IC中的重要组件,层间通孔(ILV)可实现层间垂直连接,但其易在制造及运行过程中出现故障,如阻塞(SAF)、短路、开路等,进而影响系统可靠性。上述问题亟需采用先进的内建自测(BIST)方法,实现高效故障检测与定位,同时降低测试开销。本文提出一种新型BIST结构,能够高效检测ILV故障,尤其针对非规则分布的ILV,并基于步进模式方法实现簇内近似故障定位。在所提出的BIST框架中,根据故障发生的概率将ILV分成若干簇,以实现对所有SAF和桥接故障(BF)以及大部分多重故障的高效检测。该策略使设计者能够对故障覆盖率、定位精度、测试时间进行微调,以满足特定设计要求。新的BIST方法解决了现有方案的一个关键缺陷,即通过引入多簇ILV结构,显著减少了测试配置数量与总体测试时间。该方法还提高了区域和硬件利用率,尤其适用于大规模电路基准测试。例如,在LU32PEENG基准测试中,将ILV划分为64个簇后,功耗、面积、硬件开销分别降低0.82%、1.03%和1.14%。

关键词:单片三维集成电路(M3D IC);层间通孔(ILV);内建自测(BIST);故障检测与定位

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Batude P, Fenouillet-Beranger C, Pasini L, et al., 2015. 3DVLSI with CoolCube process: an alternative path to scaling. Proc Symp on VLSI Technology, p.T48-T49.

[2]Campregher N, Cheung PYK, Constantinides GA, et al., 2005. Analysis of yield loss due to random photolithographic defects in the interconnect structure of FPGAs. Proc ACM/SIGDA 13th Int Symp on Field-Programmable Gate Arrays, p.138-148.

[3]Chang K, Koneru A, Chakrabarty K, et al., 2017. Design automation and testing of monolithic 3D ICs: opportunities, challenges, and solutions. Proc IEEE/ACM Int Conf on Computer-Aided Design, p.805-810.

[4]Chaudhuri A, Banerjee S, Park H, et al., 2019. Built-in self-test for inter-layer vias in monolithic 3D ICs. Proc IEEE European Test Symp, p.1-6.

[5]Chaudhuri A, Banerjee S, Park H, et al., 2020. Advances in design and test of monolithic 3-D ICs. IEEE Des Test, 37(4):92-100.

[6]Chaudhuri A, Banerjee S, Kim J, et al., 2021. Built-in self-test and fault localization for inter-layer vias in monolithic 3D ICs. ACM J Emerg Technol Comput Syst, 18(1):22.

[7]Chaudhuri A, Banerjee S, Kim J, et al., 2023. Built-in self-test of high-density and realistic ILV layouts in monolithic 3-D ICs. IEEE Trans Very Large Scale Integr Syst, 31(3):296-309.

[8]Chen T, Ding RY, Liu J, et al., 2024. A scan-chain-based built-in self-test for ILV in monolithic 3-D ICs. IEEE Trans Instrum Meas, 73:3536013.

[9]Cron A, Marinissen EJ, 2021. IEEE Standard 1838 is on the move. Computer, 54(11):88-94.

[10]Dang K, Ahmed AB, Abdallah AB, et al., 2019. TSV-IaS: analytic analysis and low-cost non-preemptive on-line detection and correction method for TSV defects. Proc IEEE Computer Society Annual Symp on VLSI, p.501-506.

[11]Garcia-Buendia N, Muñoz-Montoro AJ, Cortina R, et al., 2024. Mapping the landscape of quantum computing and high performance computing research over the last decade. IEEE Access, 12:106107-106120.

[12]Geffken RM, Luce SE, 1999. Method of Forming a Self-Aligned Copper Diffusion Barrier in Vias. US Patent 5,985,762.

[13]Huang LH, Cheng YY, Wu TL, 2025. Analysis and optimization of HBM3 PPA for TSV model with micro-bump and hybrid bonding. IEEE Trans Compon Packag Manuf Technol, 15(1):22-29.

[14]Jutman A, 2004. Shift register based TPG for at-speed interconnect BIST. Proc 24th Int Conf on Microelectronics, p.751-754.

[15]Kim J, Murali G, Vanna-Iampikul P, et al., 2020. RTL-to-GDS design tools for monolithic 3D ICs. Proc IEEE/ACM Int Conf on Computer Aided Design, p.1-8.

[16]Kim S, Park H, 2024. Comprehensive physical design flow incorporating 3-D connections for monolithic 3-D ICs. IEEE Trans Comput Aided Des Integr Circ Syst, 43(7):1944-1956.

[17]Koneru A, Chakrabarty K, 2020. An interlayer interconnect BIST and diagnosis solution for monolithic 3-D ICs. IEEE Trans Comput Aided Des Integr Circ Syst, 39(10):3056-3066.

[18]Koneru A, Kannan S, Chakrabarty K, 2016. Impact of wafer-bonding defects on monolithic 3D integrated circuits. Proc IEEE 25th Conf on Electrical Performance of Electronic Packaging and Systems, p.91-94.

[19]Lee YW, Lim H, Seo S, et al., 2019. A low-cost concurrent TSV test architecture with lossless test output compression scheme. PLoS ONE, 14(8):e0221043.

[20]Mok J, Lim H, Kang S, 2021. Enhanced postbond test architecture for bridge defects between the TSVs. IEEE Trans Very Large Scale Integr Syst, 29(6):1164-1177.

[21]Park H, Ku BW, Chang K, et al., 2020. Pseudo-3D approaches for commercial-grade RTL-to-GDS tool flow targeting monolithic 3D ICs. Proc Int Symp on Physical Design, p.47-54.

[22]Pendurkar R, Chatterjee A, Zorian Y, 2001. Switching activity generation with automated BIST synthesis for performance testing of interconnects. IEEE Trans Comput Aided Des Integr Circ Syst, 20(9):1143-1158.

[23]Pentapati S, Lim SK, 2024. Heterogeneous monolithic 3-D IC designs: challenges, EDA solutions, and power, performance, cost tradeoffs. IEEE Trans Very Large Scale Integr Syst, 32(3):413-421.

[24]Rahimi H, Jahanirad H, 2021. An evolutionary approach to implement logic circuits on three dimensional FPGAs. Expert Syst Appl, 174:114780.

[25]Rajski J, Tyszer J, 2013. Fault diagnosis of TSV-based interconnects in 3-D stacked designs. Proc IEEE Int Test Conf, p.1-10.

[26]Rose J, Luu J, Yu CW, et al., 2012. The VTR project: architecture and CAD for FPGAs from Verilog to routing. Proc ACM/SIGDA Int Symp on Field Programmable Gate Arrays, p.77-86.

[27]Thuries S, Billoint O, Choisnet S, et al., 2020. M3D-ADTCO: monolithic 3D architecture, design and technology co-optimization for high energy efficient 3D IC. Proc Design, Automation & Test in Europe Conf & Exhibition, p.1740-1745.

[28]Yonehara T, 2015. Epitaxial layer transfer technology and application. Proc IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conf, p.1-3.

[29]Zhou YL, Zhou ZX, Wei YM, et al., 2024. A CFMB STT-MRAM-based computing-in-memory proposal with cascade computing unit for edge AI devices. IEEE Trans Circ Syst I Regul Pap, 71(1):187-200.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE