Full Text:   <1037>

Summary:  <28>

CLC number: TP333

On-line Access: 2022-07-21

Received: 2021-05-26

Revision Accepted: 2022-07-21

Crosschecked: 2021-10-07

Cited: 0

Clicked: 1963

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Sutapa SARKAR

https://orcid.org/0000-0002-9469-5696

Biplab Kumar SIKDAR

https://orcid.org/0000-0002-9394-8540

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.7 P.1110-1126

http://doi.org/10.1631/FITEE.2100255


Cellular automata based multi-bit stuck-at fault diagnosis for resistive memory


Author(s):  Sutapa SARKAR, Biplab Kumar SIKDAR, Mousumi SAHA

Affiliation(s):  Department of Electronics and Communication Engineering, Seacom Engineering College, Howrah, West Bengal 711302, India; more

Corresponding email(s):   sutapa321@gmail.com, biplab@cs.iiests.ac.in, msaha.nitd@gmail.com

Key Words:  Resistive memory, Cell reliability, Stuck-at fault diagnosis, Single-length-cycle single-attractor cellular automata, Single-length-cycle two-attractor cellular automata, Single-length-cycle multiple-attractor cellular automata


Sutapa SARKAR, Biplab Kumar SIKDAR, Mousumi SAHA. Cellular automata based multi-bit stuck-at fault diagnosis for resistive memory[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(7): 1110-1126.

@article{title="Cellular automata based multi-bit stuck-at fault diagnosis for resistive memory",
author="Sutapa SARKAR, Biplab Kumar SIKDAR, Mousumi SAHA",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="7",
pages="1110-1126",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100255"
}

%0 Journal Article
%T Cellular automata based multi-bit stuck-at fault diagnosis for resistive memory
%A Sutapa SARKAR
%A Biplab Kumar SIKDAR
%A Mousumi SAHA
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 7
%P 1110-1126
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100255

TY - JOUR
T1 - Cellular automata based multi-bit stuck-at fault diagnosis for resistive memory
A1 - Sutapa SARKAR
A1 - Biplab Kumar SIKDAR
A1 - Mousumi SAHA
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 7
SP - 1110
EP - 1126
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100255


Abstract: 
This paper presents a group-based dynamic stuck-at fault diagnosis scheme intended for resistive random-access memory (ReRAM). Traditional static random-access memory, dynamic random-access memory, NAND, and NOR flash memory are limited by their scalability, power, package density, and so forth. Next-generation memory types like ReRAMs are considered to have various advantages such as high package density, non-volatility, scalability, and low power consumption, but cell reliability has been a problem. Unreliable memory operation is caused by permanent stuck-at faults due to extensive use of write- or memory-intensive workloads. An increased number of stuck-at faults also prematurely limit chip lifetime. Therefore, a cellular automaton (CA) based dynamic stuck-at fault-tolerant design is proposed here to combat unreliable cell functioning and variable cell lifetime issues. A scalable, block-level fault diagnosis and recovery scheme is introduced to ensure readable data despite multi-bit stuck-at faults. The scheme is a novel approach because its goal is to remove all the restrictions on the number and nature of stuck-at faults in general fault conditions. The proposed scheme is based on Wolfram's null boundary and periodic boundary CA theory. Various special classes of CAs are introduced for 100% fault tolerance: single-length-cycle single-attractor cellular automata (SACAs), single-length-cycle two-attractor cellular automata (TACAs), and single-length-cycle multiple-attractor cellular automata (MACAs). The target micro-architectural unit is designed with optimal space overhead.

基于元胞自动机的电阻存储器多比特固定型故障诊断

Sutapa SARKAR1, Biplab Kumar SIKDAR2, Mousumi SAHA3
1Seacom工程学院电子与通信工程系,印度西孟加拉邦豪拉市,711302
2印度工程科学与技术学院计算机科学与技术系,印度西孟加拉邦豪拉市,711303
3国立技术学院计算机科学与工程系,印度西孟加拉邦杜尔加普尔,713209
摘要:本文提出一种用于可变电阻式存储器(ReRAM)、基于组的动态固定型故障诊断方案。传统的静态随机存取存储器、动态随机存取存储器、NAND和NOR闪存受可扩展性、功率、封装密度等限制。可变电阻式存储器这类下一代存储器被认为具有多种优势,如高封装密度、非易失性、可扩展性和低功耗,但单元可靠性一直是个问题。不可靠的内存操作是由于大量使用写入或内存密集型工作负载而导致的永久性固定型故障。越来越多的固定型故障也限制了芯片寿命。因此,本文提出一种基于元胞自动机(CA)的动态消除固定型故障设计,以解决不可靠的电池功能和不稳定的电池寿命问题。引入可扩展的块级故障诊断和恢复方案,以确保在出现多比特固定型故障情形下仍可读取数据。该方案是一种新颖方法,因其目标是消除一般故障条件下对固定型故障的数量和性质的限制。所提方案基于Wolfram零边界和周期性边界CA理论。引入多种特殊类别CA--单长循环单吸引子元胞自动机(SACA)、单长循环双吸引子元胞自动机(TACA)和单长循环多吸引子元胞自动机(MACA)--以实现完全容错。目标微架构单元设计具有最佳空间开销。

关键词:电阻存储器;电池可靠性;块级故障诊断;单长循环单吸引子元胞自动机;单长循环双吸引子元胞自动机;单长循环多吸引子元胞自动机

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Dalui M, Sikdar BK, 2017. A cellular automata based self-correcting protocol processor for scalable CMPs. Microelectron J, 62:108-119.

[2]Das S, Naskar NN, Mukherjee S, et al., 2010. Characterization of CA rules for SACA targeting detection of faulty nodes in WSN. Proc 9th Int Conf on Cellular Automata for Research and Industry, p.300-311.

[3]Fan J, Jiang S, Shu JW, et al., 2013. Aegis: partitioning data block for efficient recovery of stuck-at-faults in phase change memory. Proc 46th Annual IEEE/ACM Int Symp on Microarchitecture, p.433-444.

[4]Hamming RW, 1950. Error detecting and error correcting codes. Bell Syst Techn J, 29(2):147-160.

[5]Ipek E, Condit J, Nightingale EB, et al., 2010. Dynamically replicated memory: building reliable systems from nanoscale resistive memories. ACM SIGARCH Comput Arch News, 38(1):3-14.

[6]Kang S, Cho WY, Cho BH, et al., 2007. A 0.1-μm 1.8-V 256-MB phase-change random access memory (PRAM) with 66-MHz synchronous burst-read operation. IEEE J Sol-State Circ, 42(1):210-218.

[7]Lin IC, Chiou JN, 2015. High-endurance hybrid cache design in CMP architecture with cache partitioning and access-aware policies. IEEE Trans Very Large Scale Integr (VLSI) Syst, 23(10):2149-2161.

[8]Melhem R, Maddah R, Cho S, 2012. RDIS: a recursively defined invertible set scheme to tolerate multiple stuck-at faults in resistive memory. Proc IEEE/IFIP Int Conf on Dependable Systems and Networks, p.1-12.

[9]Qureshi MK, Karidis J, Franceschini M, et al., 2009. Enhancing lifetime and security of PCM-based main memory with start-gap wear leveling. Proc 42nd Annual IEEE/ACM Int Symp on Microarchitecture, p.14-23.

[10]Radojković P, Carpenter PM, Moretó M, et al., 2016. Thread assignment in multicore/multithreaded processors: a statistical approach. IEEE Trans Comput, 65(1):256-269.

[11]Saha M, Sarkar S, Sikdar BK, 2016. Cellular automata based fault tolerant resistive memory design. Proc 6th Int Symp on Embedded Computing and System Design, p.176-180.

[12]Sarkar S, 2018. Multi-bit stuck-at fault recovery system with error correction pointer. Proc 3rd Int Conf on Communication and Electronics Systems, p.528-533.

[13]Sarkar S, Saha M, Sikdar BK, 2017. Multi-bit fault tolerant design for resistive memories through dynamic partitioning. Proc IEEE East-West Design & Test Symp, p.1-6.

[14]Sarkar S, Ghosh M, Sikdar BK, et al., 2020. Periodic boundary cellular automata based wear leveling for resistive memory. IAENG Int J Comput Sci, 47(2):310-321.

[15]Schechter S, Loh GH, Strauss K, et al., 2010. Use ECP, not ECC, for hard failures in resistive memories. ACM SIGARCH Comput Arch News, 38(3):141-152.

[16]Seong NH, Woo DH, Srinivasan V, et al., 2010. SAFER: stuck-at-fault error recovery for memories. Proc 43rd Annual IEEE/ACM Int Symp on Microarchitecture, p.115-124.

[17]Strukov D, 2006. The area and latency tradeoffs of binary bit-parallel BCH decoders for prospective nanoelectronic memories. Proc 40th Asilomar Conf on Signals, Systems and Computers, p.1183-1187.

[18]Zhou P, Zhao B, Yang J, et al., 2009. A durable and energy efficient main memory using phase change memory technology. Proc 36th Annual Int Symp on Computer Architecture, p.14-23.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE