
CLC number: TN82
On-line Access: 2025-11-17
Received: 2025-02-25
Revision Accepted: 2025-06-20
Crosschecked: 2025-11-18
Cited: 0
Clicked: 517
Citations: Bibtex RefMan EndNote GB/T7714
Gu LIU, Jiajiang SHEN, Lei MA, Wei QIN, Wenwen YANG, Lei GUO, Jianxin CHEN. Port and radiation pattern decoupled metasurface-loaded patch antenna using deep-learning-assisted optimization for MIMO applications[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 2030-2040.
@article{title="Port and radiation pattern decoupled metasurface-loaded patch antenna using deep-learning-assisted optimization for MIMO applications",
author="Gu LIU, Jiajiang SHEN, Lei MA, Wei QIN, Wenwen YANG, Lei GUO, Jianxin CHEN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="2030-2040",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500119"
}
%0 Journal Article
%T Port and radiation pattern decoupled metasurface-loaded patch antenna using deep-learning-assisted optimization for MIMO applications
%A Gu LIU
%A Jiajiang SHEN
%A Lei MA
%A Wei QIN
%A Wenwen YANG
%A Lei GUO
%A Jianxin CHEN
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 2030-2040
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500119
TY - JOUR
T1 - Port and radiation pattern decoupled metasurface-loaded patch antenna using deep-learning-assisted optimization for MIMO applications
A1 - Gu LIU
A1 - Jiajiang SHEN
A1 - Lei MA
A1 - Wei QIN
A1 - Wenwen YANG
A1 - Lei GUO
A1 - Jianxin CHEN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 2030
EP - 2040
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500119
Abstract: A metasurface-loaded 1×2 patch array antenna assisted by a deep-learning optimization method is proposed to realize port and radiation pattern decoupling simultaneously to enhance the isolation among elements in multi-input multi-output (MIMO) systems. The deep-learning-assisted optimization method uses an artificial neural network (ANN) and a particle swarm optimization (PSO) algorithm to seek the optimal structure of the antenna to achieve port decoupling with undistorted radiation patterns. The ANN is trained to describe the nonlinear relationship between the geometric parameters and the responses of the antenna. The PSO algorithm, guided by the cost function and number of iterations, is used to optimize the structure of the antenna according to the cost function combined with the trained ANN. Finally, by constraining the cost function, we obtain a 1×2 patch array antenna with a metasurface fixed above by studs, which achieves port and radiation pattern decoupling simultaneously. To validate the principle and design method, we designed, fabricated, and measured an antenna prototype with dimensions of 0.88λ0×0.47λ0×0.21λ0 (λ0 is the wavelength in free space at the center frequency). The measured fractional bandwidth is 8% (4.8–5.2 GHz). The isolation of the two-element patch antenna increases from 7.6 dB to 24.3 dB with an envelope correlation coefficient (ECC) of <0.0005 at 0.35λ0. Moreover, the H-plane radiation pattern of each element is consistent and symmetric in the broadside direction. These characteristics make the proposed antenna suitable for MIMO antenna systems with close spacing.
[1]Abbasi NA, Virdee B, Din IU, et al., 2025. High-isolation array antenna design for 5G mm-wave MIMO applications. J Infrared Millimeter Terahertz Waves, 46(1):12.
[2]Alibakhshikenari M, Virdee BS, Shukla P, et al., 2018. Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays. Electronics, 7(9):198.
[3]Alibakhshikenari M, Khalily M, Virdee BS, et al., 2019a. Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access, 7:23606-23614.
[4]Alibakhshikenari M, Khalily M, Virdee BS, et al., 2019b. Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas. IEEE Access, 7:51827-51840.
[5]Alibakhshikenari M, Parchin NO, Virdee BS, et al., 2020a. High performance metasurface-based on-chip antenna for terahertz integrated circuits. 3rd Int Workshop on Mobile Terahertz Systems, p.1-4.
[6]Alibakhshikenari M, Virdee BS, See CH, et al., 2020b. Impedance matching network based on metasurfaces (2-D metamaterials) for electrically small antennas. IEEE Int Symp on Antennas and Propagation and North American Radio Science Meeting, p.1953-1954.
[7]Alibakhshikenari M, Virdee BS, See CH, et al., 2020c. Metasurface for controlling polarization of scattered EM waves. 4th Australian Microwave Symp, p.1-2.
[8]Alibakhshikenari M, Virdee BS, Althuwayb AA, et al., 2021. An innovative and simple impedance matching network using stacks of metasurface sheets to suppress the mismatch between antennas and RF front-end transceivers circuits. 15th European Conf on Antennas and Propagation, p.1-4.
[9]Alibakhshikenari M, Zidour A, Virdee BS, et al., 2024. Innovative UWB phase shifters using groove gap-waveguide technology inspired by metasurfaces for beamforming networks operating at 100 GHz. IEEE Asia-Pacific Microwave Conf, p.740-742.
[10]Bouknia ML, Zebiri C, Sayad D, et al., 2021. Analysis of the combinatory effect of uniaxial electrical and magnetic anisotropy on the input impedance and mutual coupling of a printed dipole antenna. IEEE Access, 9:84910-84921.
[11]Chen SC, Wang YS, Chung SJ, 2008. A decoupling technique for increasing the port isolation between two strongly coupled antennas. IEEE Trans Antenn Propag, 56(12):3650-3658.
[12]Din IU, Alibakhshikenari M, Virdee BS, et al., 2023. High performance antenna system in MIMO configuration for 5G wireless communications over sub-6 GHz spectrum. Radio Sci, 58(10):e2023RS007726.
[13]Femenias G, Riera-Palou F, 2022. Wideband cell-free mmWave massive MIMO-OFDM: beam squint-aware channel covariance-based hybrid beamforming. IEEE Trans Wirel Commun, 21(7):4695-4710.
[14]Gao D, Cao ZX, Fu SD, et al., 2020. A novel slot-array defected ground structure for decoupling microstrip antenna array. IEEE Trans Antenn Propag, 68(10):7027-7038.
[15]Han K, Hong S, 2024. Range-angle decoupling technique using wavelength-dependent beamforming for high-resolution MIMO radar. IEEE Trans Microw Theory Tech, 72(7):4269-4277.
[16]Heo JM, Kim H, Kim DY, et al., 2024. Dual-band dual-polarization decoupling metasurface using stacked mushroom structure with asymmetric via posts. IEEE Antenn Wirel Propag Lett, 23(6):1685-1689.
[17]Huang H, Yang XS, Wang BZ, 2023. Machine-learning-based generative optimization method and its application to an antenna decoupling design. IEEE Trans Antenn Propag, 71(7):6243-6248.
[18]Hussein H, Elmunim NA, Atasoy F, et al., 2024. A novel MIMO antenna integrated with a solar panel and employing AI-equalization for 5G wireless communication networks. IEEE Access, 12:114382-114393.
[19]Jensen MA, Wallace JW, 2004. A review of antennas and propagation for MIMO wireless communications. IEEE Trans Antenn Propag, 52(11):2810-2824.
[20]Kennedy J, Eberhart R, 1995. Particle swarm optimization. Proc Int Conf on Neural Networks, p.1942-1948.
[21]Khan I, Song CY, Ullah H, et al., 2025. A novel multiband low mutual coupling quad-element MIMO antenna for advanced communication systems. IEEE Access, 13:65198-65215.
[22]Kiani SH, Munir ME, Savci HŞ, et al., 2024. Dual-polarized wideband 5G N77 band slotted MIMO antenna system for next-generation smartphones. IEEE Access, 12:34467-34476.
[23]Lai QX, Pan YM, Zheng SY, 2023. A self-decoupling method for MIMO antenna array using characteristic mode of ground plane. IEEE Trans Antenn Propag, 71(3):2126-2135.
[24]Li JK, Zhai HQ, Zhao LY, et al., 2022. High-capacity compact massive MIMO array with hybrid decoupling scheme. IEEE Trans Antenn Propag, 70(10):9292-9304.
[25]Lin HW, Chen QG, Ji Y, et al., 2020. Weak-field-based self-decoupling patch antennas. IEEE Trans Antenn Propag, 68(6):4208-4217.
[26]Liu F, Guo JY, Zhao LY, et al., 2020. Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Trans Antenn Propag, 68(1):552-557.
[27]Liu GY, Yang N, Leung KW, et al., 2024a. A full design perspective of port decoupling for MIMO antennas: preservation of radiation pattern. IEEE Trans Antenn Propag, 72(12):9164-9176.
[28]Liu GY, Yang N, Leung KW, 2024b. Radiation pattern decoupled circular polarization microstrip antennas using metal pins. IEEE Int Workshop on Antenna Technology, p.98-100.
[29]Liu RP, An X, Zheng HX, et al., 2020. Neutralization line decoupling tri-band multiple-input multiple-output antenna design. IEEE Access, 8:27018-27026.
[30]Ma LN, Shao ZJ, Lai J, et al., 2023. A compact dual-decoupling scheme for aperture-coupled and probe-fed closely spaced wideband microstrip antennas. IEEE Trans Antenn Propag, 71(11):9072-9077.
[31]Madani S, Jog S, Lacruz JO, et al., 2021. Practical null steering in millimeter wave networks. Proc 18th USENIX Symp on Networked Systems Design and Implementation, p.903-921.
[32]Mondal P, Dhara D, Harish AR, 2024. A partially reflective FSS-based superstrate as a decoupling structure for reducing the mutual coupling of circularly polarized antennas. IEEE Trans Antenn Propag, 72(4):3652-3661.
[33]Odabasi H, Salimitorkamani M, Turan G, 2023. Mutual coupling reduction between closely placed patch antennas using complementary U-shaped polarization converter. IEEE Antenn Wirel Propag Lett, 22(11):2710-2714.
[34]Ozer S, Kouhalvandi L, Matekovits L, et al., 2024. Design of wideband metasurface structure with the aid of bottom-up optimization. Int Conf on Electromagnetics in Advanced Applications, p.316-319.
[35]Paulraj AJ, Gore DA, Nabar RU, et al., 2004. An overview of MIMO communications—a key to gigabit wireless. Proc IEEE, 92(2):198-218.
[36]Poli R, Kennedy J, Blackwell T, 2007. Particle swarm optimization: an overview. Swarm Intell, 1(1):33-57.
[37]Qi XL, Peng MG, Zhang HM, et al., 2024. Anti-jamming hybrid beamforming design for millimeter-wave massive MIMO systems. IEEE Trans Wirel Commun, 23(8):9160-9172.
[38]Qian JF, Izquierdo BS, Gao S, et al., 2024. A novel low-cost H-plane decoupling technique for two closely placed patch antennas using electric and magnetic coupling cancellation. IEEE Trans Antenn Propag, 72(5):3864-3873.
[39]Shi J, Geng X, Yan SC, et al., 2022. An approach to achieving multiple mutual coupling nulls in MIMO stacked patch antenna for decoupling bandwidth enhancement. IEEE Trans Circ Syst II Exp Briefs, 69(12):4809-4813.
[40]Sun LB, Li Y, Zhang ZJ, 2021. Decoupling between extremely closely spaced patch antennas by mode cancellation method. IEEE Trans Antenn Propag, 69(6):3074-3083.
[41]Tong CW, Yang N, Leung KW, et al., 2022a. H-plane radiation pattern decoupled patch antennas with zero edge-to-edge spacing using three-pair vias. Proc TENCON IEEE Region 10 Conf, p.1-3.
[42]Tong CW, Yang N, Leung KW, et al., 2022b. Port and radiation pattern decoupling of dielectric resonator antennas. IEEE Trans Antenn Propag, 70(9):7713-7726.
[43]Tong CW, Yang N, Leung KW, et al., 2024. Design of MIMO antennas with DRAs and a dual-function decoupling/radiating monopole antenna. IEEE Trans Antenn Propag, 72(5):3874-3885.
[44]Wang MN, Shao ZJ, Tang M, et al., 2024. Miniaturization and decoupling of wideband stacked patch antennas based on spoof surface plasmon polaritons. IEEE Trans Antenn Propag, 72(10):8076-8081.
[45]Wang ZB, Tu ZH, Yuan ZF, et al., 2023. Decoupling and wide-angle scanning design of a millimeter-wave phased array using square-ring metasurface. IEEE Antenn Wirel Propag Lett, 22(8):1828-1832.
[46]Wu JB, Tong CW, Yang N, et al., 2023. Radiation pattern decoupled patch antennas based on TM01 and TM11 modes. IEEE Antenn Wirel Propag Lett, 22(11):2695-2699.
[47]Xia RL, Qu SW, Li PF, et al., 2015. An efficient decoupling feeding network for microstrip antenna array. IEEE Antenn Wirel Propag Lett, 14:871-874.
[48]Xiao ZQ, Chen SQ, Zeng Y, 2024. Simultaneous multi-beam sweeping for mmWave massive MIMO integrated sensing and communication. IEEE Trans Veh Technol, 73(6):8141-8152.
[49]Xiong B, Zhu YZ, Xu YX, et al., 2024. A novel millimeter-wave 2D wide-angle scanning phased array antenna based on decoupling surface. IET Microw Antenn Propag, 18(11):810-818.
[50]Xu JP, He XN, Deng TW, 2024. A self-decoupled MIMO patch array with consistent radiation patterns. IEEE Trans Antenn Propag, 72(12):8971-8979.
[51]Zhai JH, Cao YF, Xue Q, et al., 2024. Cross-band decoupling method for dual-band aperture-shared antenna array using metasurfaces. IEEE Trans Antenn Propag, 72(2):2001-2006.
[52]Zhang S, Pedersen GF, 2016. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antenn Wirel Propag Lett, 15:166-169.
[53]Zhao BS, Tang M, Zhang YP, et al., 2024. Wideband decoupling of zero edge spacing laminated resonator antenna array. IEEE Trans Antenn Propag, 72(8):6481-6490.
Open peer comments: Debate/Discuss/Question/Opinion
<1>