CLC number: TN918
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-03
Cited: 0
Clicked: 1311
Citations: Bibtex RefMan EndNote GB/T7714
Zheng WAN, Mengyao YAN, Kaizhi HUANG, Zhou ZHONG, Xiaoming XU, Yajun CHEN, Fan WU. Pattern-reconfigurable antenna-assisted secret key generation from multipath fading channels[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1803-1814.
@article{title="Pattern-reconfigurable antenna-assisted secret key generation from multipath fading channels",
author="Zheng WAN, Mengyao YAN, Kaizhi HUANG, Zhou ZHONG, Xiaoming XU, Yajun CHEN, Fan WU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1803-1814",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300126"
}
%0 Journal Article
%T Pattern-reconfigurable antenna-assisted secret key generation from multipath fading channels
%A Zheng WAN
%A Mengyao YAN
%A Kaizhi HUANG
%A Zhou ZHONG
%A Xiaoming XU
%A Yajun CHEN
%A Fan WU
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1803-1814
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300126
TY - JOUR
T1 - Pattern-reconfigurable antenna-assisted secret key generation from multipath fading channels
A1 - Zheng WAN
A1 - Mengyao YAN
A1 - Kaizhi HUANG
A1 - Zhou ZHONG
A1 - Xiaoming XU
A1 - Yajun CHEN
A1 - Fan WU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1803
EP - 1814
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300126
Abstract: Physical layer key generation (PKG) technology leverages reciprocal channel randomness to generate shared secret keys. However, multipath fading at the receiver may degrade the correlation between legitimate uplink and downlink channels, resulting in a low key generation rate (KGR). In this paper, we propose a PKG scheme based on the pattern-reconfigurable antenna (PRA) to boost the secret key capacity. First, we propose a reconfigurable intelligent surface (RIS) based PRA architecture with the capability of flexible and reconfigurable antenna patterns. Then, we present the PRA-based PKG protocol to improve the KGR via mitigation of the effects of multipath fading. Specifically, a novel algorithm for estimation of the multipath channel parameters is proposed based on atomic norm minimization. Thereafter, a novel optimization method for the matching reception of multipath signals is formulated based on the improved binary particle swarm optimization (BPSO) algorithm. Finally, simulation results show that the proposed scheme can resist multipath fading and achieve a high KGR compared to existing schemes. Moreover, our findings indicate that the increased degree of freedom of the antenna patterns can significantly increase the secret key capacity.
[1]Alexandropoulos GC, Vlachos E, 2020. A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.9175-9179.
[2]Alexandropoulos GC, Vinieratou I, Wymeersch H, 2022. Localization via multiple reconfigurable intelligent surfaces equipped with single receive RF chains. IEEE Wirel Commun Lett, 11(5):1072-1076.
[3]Cheng Q, Zhang L, Dai JY, et al., 2022. Reconfigurable intelligent surfaces: simplified-architecture transmitters—from theory to implementations. Proc IEEE, 110(9):1266-1289.
[4]Dai LL, Wang BC, Wang M, et al., 2020. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access, 8:45913-45923.
[5]He JG, Wymeersch H, Juntti M, 2021. Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization. IEEE Trans Wirel Commun, 20(9):5786-5797.
[6]Hu L, Li GY, Qian XW, et al., 2022. Joint transmit and reflective beamforming for RIS-assisted secret key generation. Proc IEEE Global Communications Conf, p.2352-2357.
[7]Ji XS, Wu JX, Jin L, et al., 2022. Discussion on a new paradigm of endogenous security towards 6G networks. Front Inform Technol Electron Eng, 23(10):1421-1450.
[8]Ji ZJ, Yeoh PL, Zhang DY, et al., 2021. Secret key generation for intelligent reflecting surface assisted wireless communication networks. IEEE Trans Veh Technol, 70(1):1030-1034.
[9]Jian MN, Alexandropoulos GC, Basar E, et al., 2022. Reconfigurable intelligent surfaces for wireless communications: overview of hardware designs, channel models, and estimation techniques. Intell Converg Netw, 3(1):1-32.
[10]Jin L, Hu XY, Lou YM, et al., 2021. Introduction to wireless endogenous security and safety: problems, attributes, structures and functions. China Commun, 18(9):88-99.
[11]Khanesar MA, Teshnehlab M, Shoorehdeli MA, 2007. A novel binary particle swarm optimization. Proc Mediterranean Conf on Control & Automation, p.1-6.
[12]Lin MT, Xu M, Wan X, et al., 2021. Single sensor to estimate DOA with programmable metasurface. IEEE Int Things J, 8(12):10187-10197.
[13]Lou YM, Jin L, Sun XL, et al., 2022. Multi-path separation and parameter estimation by single DMA in fading channel. IET Commun, 16(13):1475-1485.
[14]Lu Y, Hao M, Mackenzie R, 2022. Reconfigurable intelligent surface based hybrid precoding for THz communications. Intell Converg Netw, 3(1):103-118.
[15]Qian XW, Di Renzo M, 2021. Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces. IEEE Wirel Commun Lett, 10(6):1183-1187.
[16]Saenz E, Ederra I, Gonzalo R, et al., 2009. Coupling reduction between dipole antenna elements by using a planar meta-surface. IEEE Trans Antenn Propag, 57(2):383-394.
[17]Shlezinger N, Alexandropoulos GC, Imani MF, et al., 2021. Dynamic metasurface antennas for 6G extreme massive MIMO communications. IEEE Wirel Commun, 28(2):106-113.
[18]Tse D, Viswanath P, 2005. Fundamentals of Wireless Communication. Cambridge University Press, Cambridge, UK.
[19]Wan Z, Huang KZ, Lou YM, et al., 2021. Channel covariance matrix based secret key generation for low-power terminals in frequency division duplex systems. Electron Lett, 57(8):324-327.
[20]Wu GB, Dai JY, Cheng Q, et al., 2022. Sideband-free space-time-coding metasurface antennas. Nat Electron, 5(11):808-819.
[21]Wu W, Wu Z, Liang WL, 2019. Metasurface inspired pattern reconfigurable antenna. Proc IEEE MTT-S Int Wireless Symp, p.1-3.
[22]Yang XM, Liu XG, Zhou XY, et al., 2012. Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials. IEEE Antenn Wirel Propag Lett, 11:389-391.
[23]Zhang HL, Song LY, Han Z, et al., 2021. Spatial equalization before reception: reconfigurable intelligent surfaces for multi-path mitigation. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.8062-8066.
[24]Zhang L, Chen XQ, Liu S, et al., 2018. Space-time-coding digital metasurfaces. Nat Commun, 9(1):4334.
[25]Zhou RY, Chen XY, Tang WK, et al., 2022. Modeling and measurements for multi-path mitigation with reconfigurable intelligent surfaces. Proc 16th European Conf on Antennas and Propagation, p.1-5.
Open peer comments: Debate/Discuss/Question/Opinion
<1>