Full Text:   <24>

CLC number: 

On-line Access: 2025-03-07

Received: 2025-03-07

Revision Accepted: 2025-03-07

Crosschecked: 2025-03-07

Cited: 0

Clicked: 33

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.2 P.157-160

http://doi.org/10.1631/FITEE.2510000


Artificial-intelligence-empowered digital-twin-based network autonomy


Author(s):  Guangyi LIU, Jiangzhou WANG, Rongpeng LI, Jianhua ZHANG

Affiliation(s):  China Mobile Research Institute, Beijing 100053, China; more

Corresponding email(s):   liuguangyi@chinamobile.com, j.z.wang@kent.ac.uk, jhzhang@bupt.edu.cn

Key Words: 


Share this article to: More |Next Article >>>

Guangyi LIU, Jiangzhou WANG, Rongpeng LI, Jianhua ZHANG. Artificial-intelligence-empowered digital-twin-based network autonomy[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(2): 157-160.

@article{title="Artificial-intelligence-empowered digital-twin-based network autonomy",
author="Guangyi LIU, Jiangzhou WANG, Rongpeng LI, Jianhua ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="2",
pages="157-160",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2510000"
}

%0 Journal Article
%T Artificial-intelligence-empowered digital-twin-based network autonomy
%A Guangyi LIU
%A Jiangzhou WANG
%A Rongpeng LI
%A Jianhua ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 2
%P 157-160
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2510000

TY - JOUR
T1 - Artificial-intelligence-empowered digital-twin-based network autonomy
A1 - Guangyi LIU
A1 - Jiangzhou WANG
A1 - Rongpeng LI
A1 - Jianhua ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 2
SP - 157
EP - 160
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2510000


Abstract: 
With the rapid acceleration of global digitalization, the sixth-generation (6G) mobile network is poised to play a pivotal role in advancing industrial intelligence, fostering high-quality economic development, and enabling comprehensive societal digital transformation. Confronted with the increasing complexity and cost pressures of maintaining and optimizing existing fifth-generation (5G) mobile networks, as well as the limitations of added-on or patched artificial intelligence (AI), 6G networks must integrate AI into their design from the outset. On one hand, native AI can provide on-demand computing power, data, and algorithmic support, systematically enabling AI in the entire life cycle of the network. On the other hand, the digital twin (DT) of wireless networks further bolsters network simulation, dynamics prediction, and performance verification capabilities, tremendously reducing trial-and-error costs. Research on integrating native AI and DT technologies into 6G mobile networks is inspiring, and potential key technical benefits of the development of 6G network autonomy include:1. The architectures and deployment for 6G autonomous networksArchitectural design and deployment are crucial to better support autonomy in 6G networks. The service-based radio access network (RAN) architecture is a promising approach that leverages AI to enable dynamic resource allocation and hierarchical deployment, meeting diverse task requirements while improving network flexibility. Additionally, autonomous RAN frameworks that integrate AI with network DT (NDT) technologies can significantly enhance network autonomy, equipping networks with enhanced sensing, analysis, and optimization capabilities. Furthermore, with the rise of large model technologies, studying their deployment and optimization in 6G networks has emerged as a new focal point.2. DT-enabled AI learning and 6G network optimizationIntegrating AI and DT technologies brings intelligent enhancements to 6G networks while introducing new optimization challenges. The precise modeling and future network state prediction capabilities of DT networks (DTNs) not only enable high-fidelity reconstruction of communication environments but also enhance the network’s adaptability to dynamic changes. Furthermore, the collaborative optimization of pricing strategies and task offloading in 6G networks empowered by native AI and DT technologies can promote high-level network autonomy while optimizing the AI training process.3. Leveraging AI to enhance 6G network performanceAI technologies play a significant role in improving 6G network performance. By optimizing resource allocation and network configuration, AI can boost system capacity and significantly enhance communication efficiency. Additionally, integrating DT with AI facilitates the development of more efficient wireless network management solutions, fostering sustainable development in 6G networks.

人工智能赋能的数字孪生网络自治

刘光毅1,2,王江舟3,李荣鹏4,张建华5
1中国移动研究院,中国北京市,100053
2中关村泛联移动通信技术创新应用研究院,中国北京市,100080
3肯特大学工程与数字艺术学院,英国坎特伯雷,CT2 7NZ
4浙江大学信息与电子工程学院,中国杭州市,310027
5北京邮电大学信息与通信工程学院,中国北京市,100876
随着全球数字化进程的迅速加快,第六代(6G)移动网络将在推动工业智能化、促进高质量经济发展和实现全社会全面数字化转型中发挥关键作用。面对维护和优化现有第五代(5G)移动网络日益增加的复杂性和成本压力,为发挥人工智能(AI)的优势并克服其局限性,6G网络必须从设计之初就融入AI。一方面,原生AI可以按需提供计算能力以及数据和算法支持,在网络整个生命周期中系统地启用AI;另一方面,无线网络的数字孪生(DT)进一步增强了网络模拟、动态预测和性能验证能力,极大地降低了试错成本。将原生AI和DT技术融入6G移动网络的研究令人振奋。6G网络自治的潜在关键技术益处包括:
1. 6G自治网络的架构和部署
架构设计和部署对于更好地支持6G网络的自主性至关重要。基于服务的无线接入网(RAN)架构是一种有前景的方法,它利用AI实现动态资源分配和分层部署,满足多样化的任务需求,同时提高网络灵活性。此外,结合AI与网络数字孪生技术的自主RAN框架可以显著提升网络自主性,使网络具备更强的感知、分析和优化能力。此外,随着大模型技术的兴起,研究其在6G网络中的部署和优化已成为一个新的焦点。
2. DT支持AI学习和6G网络优化
融合AI和DT技术为6G网络带来智能增强,同时也引入新的优化挑战。数字孪生网络的精确建模和未来网络状态预测能力,不仅能够实现通信环境的高保真重构,还能增强网络对动态变化的适应能力。此外,原生AI和DT技术赋能的6G网络中定价策略和任务卸载的协同优化,可以在促进高级别网络自治的同时,优化AI训练过程。
3.利用AI提升6G网络性能
AI技术在提高6G网络性能方面发挥着重要作用。通过优化资源分配和网络配置,AI可以提升系统容量并显著提高通信效率。此外,将DT与AI结合有助于开发更高效的无线网络管理解决方案,促进6G网络的可持续发展。
然而,6G网络自治的未来应用仍面临诸多挑战。在此背景下,《信息与电子工程前沿(英文)》期刊组织了本期"人工智能赋能的数字孪生网络自治"专刊。专刊涵盖了6G网络自治的基本理论、硬件设计、系统架构、算法优化和应用技术,旨在促进业界对6G无线网络架构的共识以及相关技术的标准化和实施。专刊收录8篇论文,包括1篇立意、5篇研究和2篇通讯。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE