CLC number: O632.13; TQ325.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 6089
YAO Zhen, LI Bo-geng, CAO Kun, HUANG Yuan, PAN Zu-ren. MODELING FOR THE DIFFUSION LIMITATION OF FREE RADICAL POLYMERIZATION[J]. Journal of Zhejiang University Science A, 2000, 1(2): 148-156.
@article{title="MODELING FOR THE DIFFUSION LIMITATION OF FREE RADICAL POLYMERIZATION",
author="YAO Zhen, LI Bo-geng, CAO Kun, HUANG Yuan, PAN Zu-ren",
journal="Journal of Zhejiang University Science A",
volume="1",
number="2",
pages="148-156",
year="2000",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2000.0148"
}
%0 Journal Article
%T MODELING FOR THE DIFFUSION LIMITATION OF FREE RADICAL POLYMERIZATION
%A YAO Zhen
%A LI Bo-geng
%A CAO Kun
%A HUANG Yuan
%A PAN Zu-ren
%J Journal of Zhejiang University SCIENCE A
%V 1
%N 2
%P 148-156
%@ 1869-1951
%D 2000
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2000.0148
TY - JOUR
T1 - MODELING FOR THE DIFFUSION LIMITATION OF FREE RADICAL POLYMERIZATION
A1 - YAO Zhen
A1 - LI Bo-geng
A1 - CAO Kun
A1 - HUANG Yuan
A1 - PAN Zu-ren
J0 - Journal of Zhejiang University Science A
VL - 1
IS - 2
SP - 148
EP - 156
%@ 1869-1951
Y1 - 2000
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2000.0148
Abstract: A new model was developed to describe the diffusion limitation on free radical polyme-rization. In this model the termination rate coefficient (kt) and propagation rate coefficient (kp) were expressed as a function of bulk viscosity (η). This model was used to simulate the batch thermal polymerization of styrene (St) and the continuous thermal bulk copolymerization of St (monomer 1) and maleic anhydride (MAH, monomer 2) in a CSTR with on-line monitor of the rheological behavior. The simulated results on polymerization conversion, copolymer composition, molecular weight and its distributions were compared with the experimental data, and the results calculated by two previous gel-effect models i.e. Martin-Hamielec and Tulig-Tirrell models. It was found that the present model produces better prediction than that of the Tulig-Tirrell model and has the same accuracy as that of the Martin-Hamielec model, but is much simpler.
[1]Achilias, D.S. and Kiparissides, C., 1988. Modeling of diffusion-controlled free-radical polymerizations. J. Appl. Polym. Sci. 35:1303-1323.
[2]Achilias, D.S. and Kiparissides, C., 1992a. Development of a general mathematical framework of modeling diffusion-controlled free-radical polymerization reactions. Macromolecules, 25:3739-3750.
[3]Achilias, D.S. and Kiparissides, C., 1992b. Toward the development of a general framework for modeling molecular weight and compositional changes in free-radical copolymerization reactions. J. Macromol. Sci., Rev. Macromol. Chem. Phys. C32:183-234.
[4]Bueche, M., 1962. Physical Properties of Polymers. Interscience Publishers, New York.
[5]Callaghan, P.T. and Pinder, D.N., 1980. Dynamics of entangle polystyrene solutions studied by plused field gradient nuclear magnetic resonance. Macromolecules, 13:1085-1092.
[6]Cardenas, J. and O'Driscoll, K.F., 1977. High conversion polymerization. II Influence of chain transfer on the gel effect. III Kinetic behavior of ethyl methacrylate. J. Polym. Sci., Polym. Chem. Ed., 15: (II)1883-1889; (III) 2097-2108.
[7]Chiu, W.Y., Carratt, G.M. and Soong, D.S., 1983. A computer model for the gel effect in free radical polymerization, Macromolecules, 16: 348-357.
[8]de Gennes, P.G., 1971.Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys., 55: 572-579.
[9]de Gennes, P.G., 1976. Dynamics of entangled polymer solutions. I The rouse model. II In clusion of hydrodynamic interactions. Macromolecules, 9: (I) 587-593; (II) 594-598.
[10]de Gennes, P.G., 1979. Brownian motions of flexible polymer chains, Nature (London), 282: 367-370.
[11]Duerkon, J.H., Hamielec, A.E., and Hogins, J.W., 1967. Polymer reactors and molecular weight distribution: Part I Free radical polymerization in continuous stirred-tank reactors. A.I.Ch.E.J., 13: 1081-1086.
[12]Ferry, J.D., 1970. Viscoelastic Properties of Polymer. Willy-Interscience, New York
[13]Fujita, H., 1961. Diffusion in polymer-diluent systems. Advance in Polym. Sci., 3:1-47.
[14]Fujita, H., 1991. Notes on free volume theories. J. Polym., 23: 1499-1506.
[15]Hervet, H., Leger, L. and Rondelez, F., 1979. Self-diffusion in polymer solution: A test for scaling and reptation. Phys. Rev. Lett., 42: 1681-1684.
[16]Hui, A.W.T. and Hamielec, A.E., 1972. Thermal polymerization of styrene at high conversion and temperatures. An experimental study. J. Appl. Polym. Sci., 16:749-769.
[17]Husain, A. and Hamielec, A.E., 1978. Thermal polymerization of styrene. J. Appl. Polym. Sci., 22: 1207-1223.
[18]Ito, K., 1980. Evaluation of molecular weight in terms of the gel effect in radical polymerization. J. Polym., 8: 499-506.
[19]Ito, K., 1981. Estimation of termination rate by the free volume theory in radical polymerization. J. Polym., 13:727-731.
[20]Jones, C.E. Roland and Reynolds, G.E.J., 1969. Pyrolysis/gas chromatography applied to problem of sequence analysis and microstructure in copolymers. Brit. Polym. J., 1: 197-207.
[21]Klein, J., 1978. Evidence for reptation in an entangled polymer melt. Nature (London), 271:143-146.
[22]Marten, F.L. and Hamielec, A.E., 1979. High conversion diffusion-controlled polymerization. ACS Sym. Ser., 104: 43-70.
[23]Marten, F.L. and Hamielec, A.E., 1982. High-conversion diffusion controlled polymerization of styrene, J Appl. Polym. Sci., 27: 489-505.
[24]Mendelson, P.A., 1979.A method for viscosity measurements of concentrated polymer solutions in volatile solvents at elevated temperature. J. Rheology, 23: 545-556.
[25]O'Neil, G.A. and Torkelson, J.M., 1997. Recent advances in the understanding of the gel effect in free-radical polymerization. Trends in Polym. Sci., 5: 349-355.
[26]Sharmal, D.K. and Soong, D.S., 1988. High-conversion diffusion-controlled copolymerization kinetics. Macromolecules, 21: 700-710.
[27]Soh, S.K. and Sunderg, D.C., 1982. Diffusion-controlled vinyl polymerization. I The gel effect. II Limitions on the gel effect. III Free volume parameters and diffusion-controlled. IV Comparison of theory and experiment. J. Polym. Sci. Polym. Chem. Ed., 20: (I)1299-1314; (II)1315-1330; (III)1331-1334; (IV)1345-1371.
[28]Tulig, J.T. and Tirrell, M., 1981.Toword a molecular theory of the trommsdorff effect. Macromolecules. 14:1501-1511.
[29]Turner, D.T., 1977. Autoacceleration of free-radical polymerization. I The critical concentration. Macromolecules, 10: 221-226.
[30]Vivaldoo-Lima, E., Hamielec, A.E. and Wood, P.E. ,1994. Auto-acceleration effect in free radical polymerization. A comparison of the CCS and MAH models. Polymer Reaction Engineering, 2: 17-85.
[31]Vrentas, J.S. and Duda, 1993. J.L., Comparison of free-volume theories. J. Polym. 25: 99-101.
[32]Vrentas, J.S. and Duda, J.L., 1977. Diffusion in polymer-solvent systems. I Reexamination of the free-volume theory. II A predictive theory for the dependence of diffusion coefficients on temperature. concentration, and molecular weight. J. Polym. Sci., Polym. Chem. Ed., 15:(I) 403-416; (II) 417-439.
[33]Yao, Z., Li, B.G., Cao, K. and Pan, Z.R., 1998. Semi-continuous thermal bulk copolymerization of styrene and maleic anhydride-experiments and reactor model. J. Appl. Polym. Sci., 67: 1905-1912.
[34]Yao, Z., Li, B.G., Wang, W.J. and Pan, Z.R., 1999. Continuous thermal bulk copolymerization of styrene and maleic anhydride. J. Appl. Polym. Sci., 73:615-622.
Open peer comments: Debate/Discuss/Question/Opinion
<1>