CLC number: TG172.82
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-09-08
Cited: 1
Clicked: 7090
Fan Yang, Bin Liu, Dai-ning Fang. Modeling of growth stress gradient effect on the oxidation rate at high temperature[J]. Journal of Zhejiang University Science A, 2010, 11(10): 789-793.
@article{title="Modeling of growth stress gradient effect on the oxidation rate at high temperature",
author="Fan Yang, Bin Liu, Dai-ning Fang",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="789-793",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000169"
}
%0 Journal Article
%T Modeling of growth stress gradient effect on the oxidation rate at high temperature
%A Fan Yang
%A Bin Liu
%A Dai-ning Fang
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 789-793
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000169
TY - JOUR
T1 - Modeling of growth stress gradient effect on the oxidation rate at high temperature
A1 - Fan Yang
A1 - Bin Liu
A1 - Dai-ning Fang
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 789
EP - 793
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000169
Abstract: A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.
[1]Aifantis, E.C., 1980. On the problem of diffusion in solids. Acta Mechanica, 37(3-4):265-296.
[2]Chou, K.C., 2006. A kinetics model for oxidation of Si-Al-O-N materials. Journal of the American Ceramic Society, 89(5):1568-1576.
[3]Chou, K.C., Hou, X.M., 2009. Kinetics of high-temperature oxidation of inorganic nonmetallic materials. Journal of the American Ceramic Society, 92(3):585-594.
[4]El-Dahshan, M.E., Whittle, D.P., Stringer, J., 1975. The oxidation and hot corrosion behavior of tungsten-fiber reinforced composites. Oxidation of Metals, 9(1):45-67.
[5]Fei, W.S., Kuiry, C., Seal, S., 2004. Inhibition of metastable alumina formation on Fe-Cr-Al-Y alloy fibers at high temperature using titania coating. Oxidation of Metals, 62(1-2):29-44.
[6]Guo, W.M., Zhang, G.J., Kan, Y.M., Wang, P.L., 2009. Oxidation of ZrB2 powder in the temperature range of 650–800 °C. Journal of Alloys and Compounds, 471(1-2):502-506.
[7]Han, J.C., Hu, P.X., Zhang, H., Meng, S.H., Han, W.B., 2008. Oxidation-resistant ZrB2-SiC composites at 2200 °C. Composites Science and Technology, 68(3-4):799-806.
[8]Hashemi, B., Nemati, Z.A., Faghihi-Sani, M.A., 2006. Effects of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks. Ceramics International, 32(3):313-319.
[9]Hou, P.Y., Paulikas, A.P., Veal, B.W., Smialek, J.L., 2007. Thermally grown Al2O3 on a H2-annealed Fe3Al alloy: stress evolution and film adhesion. Acta Materialia, 55(16):5601-5613.
[10]Hou, X.M., Chou, K.C., 2009. Investigation of isothermal oxidation of AlN ceramics using different kinetic model. Corrosion Science, 51(3):556-561.
[11]Hou, X.M., Chou, K.C., Li, F.S., 2008. Some new perspectives on oxidation kinetics of SiAlON materials. Journal of the European Ceramic Society, 28(6):1243-1249.
[12]Huntz, A.M., 1995. Stresses in NiO, Cr2O3, and Al2O3 oxide scales. Materials Science and Engineering: A, 201(1-2):211-228.
[13]Kao, D.B., McVittie, J.P., Nix, W.D., Saraswat, K.C., 1987. Two-dimensional thermal oxidation of silicon—I: experiments. IEEE Transactions on Electron Devices, 34(5):1008-1017.
[14]Kao, D.B., McVittie, J.P., Nix, W.D., Saraswat, K.C., 1988. Two-dimensional thermal oxidation of silicon—II: modeling stress effects in wet oxides. IEEE Transactions on Electron Devices, 35(1):25-37.
[15]Kemdehoundja, M., Grosseau-Poussard, J.L., Dinhut, J.F., Panicaud, B., 2007. Growth stresses in α-Cr2O3 thermal oxide films determined by in situ high temperature Raman spectroscopy. Journal of Applied Physics, 102(9):093513.
[16]Larche, F., Cahn, J.W., 1985. The interactions of composition and stress in crystalline solids. Acta Metallurgica, 33(3):331-357.
[17]Markworth, A.J., 1977. On the kinetics of anisothermal oxidation. Metallurgical and Materials Transactions A, 8(12):2014-2015.
[18]Nickel, K.G., 2005. Ceramic matrix composite corrosion models. Journal of the European Ceramic Society, 25(10):1699-1704.
[19]Opeka, M.M., Talmy, I.G., Wuchina, E.J, Zaykoski, J.A., Causey, S.J., 1999. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. Journal of the European Ceramic Society, 19(13-14):2405-2414.
[20]Reddy, A., Hovis, D.B., Heuer, A.H., Paulikas, A.P., Veal, B.W., 2007. In situ study of oxidation-induced growth strains in a model NiCrAlY bond-coat alloy. Oxidation of Metals, 67(3-4):153-177.
[21]Wagner, C., 1933. Beitrag zur Theorie des Anlaufvorgangs. Zeitschrift Fur Physikalische Chemie-Abteilung B-Chemie der Elementarprozesse Aufbau der Materie, 21(1-2):25-41 (in German).
[22]Wolf, J.S., Grochowski, J.M., 1975. Stress Effect and the Oxidation of Metals. In: Cathcart, J.V. (Ed.), Metallurgical Society of AIME, New York, USA, p.274-297.
Open peer comments: Debate/Discuss/Question/Opinion
<1>