CLC number: TP273.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 7141
XUE An-ke, LU Ying-quan, SUN You-xian. MODELING AND ROBUST LQ REGULATOR DESIGNING FOR REFINING PROCESS[J]. Journal of Zhejiang University Science A, 2000, 1(2): 136-143.
@article{title="MODELING AND ROBUST LQ REGULATOR DESIGNING FOR REFINING PROCESS",
author="XUE An-ke, LU Ying-quan, SUN You-xian",
journal="Journal of Zhejiang University Science A",
volume="1",
number="2",
pages="136-143",
year="2000",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2000.0136"
}
%0 Journal Article
%T MODELING AND ROBUST LQ REGULATOR DESIGNING FOR REFINING PROCESS
%A XUE An-ke
%A LU Ying-quan
%A SUN You-xian
%J Journal of Zhejiang University SCIENCE A
%V 1
%N 2
%P 136-143
%@ 1869-1951
%D 2000
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2000.0136
TY - JOUR
T1 - MODELING AND ROBUST LQ REGULATOR DESIGNING FOR REFINING PROCESS
A1 - XUE An-ke
A1 - LU Ying-quan
A1 - SUN You-xian
J0 - Journal of Zhejiang University Science A
VL - 1
IS - 2
SP - 136
EP - 143
%@ 1869-1951
Y1 - 2000
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2000.0136
Abstract: This paper presents a synthetic design procedure for a robust LQ regulator for refining process, including modeling and robust optimal system designing. The paper discusses three major topics: mathematical modeling of the process with large uncertainty, determination of a synthetic performance index for optimizing the process, and design of the robust optimal system with robust guaranteed stability. This research result is a part of preliminary results of the real refining process optimal control system implemented in the Minfeng Paper Mill, Zhejiang Province. Simulation test results showed that the proposed modeling and control algorithm are efficient and practicable.
[1]Anderson and Moore., 1989. Optimal Control. Englewood Cliffs, NJ, Prentice-Hall.
[2]Douglas, J. and Athans, M., 1994. Robust linear quadratic design with real parameter uncertainty. IEEE Trans. Automat. Contr., 39(1): 107-111.
[3]Lehtomaki, N.A., Sandell, Jr.N.R. And Athans, M., 1981. Robustness results in linear Gaussian based multivariable control designs. IEEE Trans. Automat. Contr., 26(1): 75-92.
[4]Leider, P.J. and Rihs, J.. 1977. Understanding the disk refiner. Part 1: the hydraulic behavior. Tappi, 60(9): 98-102.
[5]Lumianinen, J., 1990. New theory can improve practice. PPI,32(8): 46-54.
[6]Petersen, I.R. and Hollot, C.V., 1986. A Riccati equation approach to the stabilization of uncertain linear systems. Automatica, 22(4): 397-411.
[7]Pi Dao-ying and Sun You-xian, 1993. A mathematical model of refining process. Trans. of China Pulp and Paper, 12(8): 86-91.
[8]Safonov, M. G. and Athans, M., 1977. Gain and phase margin for multiloop LQG regulators. IEEE Trans. Automat. Contr., 22(2): 173-179.
Open peer comments: Debate/Discuss/Question/Opinion
<1>