CLC number: O241.82
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 5404
LI Da-ming. FINITE VOLUME METHOD BASED ON THE CROUZEIX-RAVIART ELEMENT FOR THE STOKES EQUATION[J]. Journal of Zhejiang University Science A, 2001, 2(2): 165-169.
@article{title="FINITE VOLUME METHOD BASED ON THE CROUZEIX-RAVIART ELEMENT FOR THE STOKES EQUATION",
author="LI Da-ming",
journal="Journal of Zhejiang University Science A",
volume="2",
number="2",
pages="165-169",
year="2001",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2001.0165"
}
%0 Journal Article
%T FINITE VOLUME METHOD BASED ON THE CROUZEIX-RAVIART ELEMENT FOR THE STOKES EQUATION
%A LI Da-ming
%J Journal of Zhejiang University SCIENCE A
%V 2
%N 2
%P 165-169
%@ 1869-1951
%D 2001
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2001.0165
TY - JOUR
T1 - FINITE VOLUME METHOD BASED ON THE CROUZEIX-RAVIART ELEMENT FOR THE STOKES EQUATION
A1 - LI Da-ming
J0 - Journal of Zhejiang University Science A
VL - 2
IS - 2
SP - 165
EP - 169
%@ 1869-1951
Y1 - 2001
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2001.0165
Abstract: The author provides a new discretization method-the finite volume method(FVM). For the stokes equation the velocity space is approximated by the nonconforming linear element based on the dual partition and the pressure by the piecewise constant based on the primal triangulation. Under the suitable smoothness of the solution, the optimal convergence rate O(h) is obtained, where h denotes the parameter of the space discretization.
[1] Chatzipanteliols Panagiotis, 1993. A finite volume method based on the Crouzix-Raviart element for the elliptic PDE's in two dimension. Numer.math. 82: 409-432.
[2] Chou S.H., 1998. A covolume element method based on rotated bilinears for the general stokes problem.SIAM.J.Anal.33(2): 499-507.
[3] Chou, S.H., 1997. Analysis and convergence of a MAC-like scheme for the generali-zed stokes problem. Numer.method for PDE.13: 147-162.
[4] Li Cai., Song Wang, 1993. The finite volume method and application in combination. Jour of Comp and Appli Math.106: 21-53.
[5] Mishev Liya, D., 1999. Finite Volume Element methods for non-definite problem.Numer.math. 83: 162-175.
[6] Vanselow Reiner, 1998. Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer method for partial diff equ.14: 213-231.
Open peer comments: Debate/Discuss/Question/Opinion
<1>